Cho a ; b ; c ; x ; y ; z \(\ne\) 0 tm : \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
CM: \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}=\dfrac{\left(a+b+c\right)^2}{x+y+z}\)
Biết : \(\dfrac{14bz-15cy}{a}=\dfrac{9cx-7az}{b}=\dfrac{5ay-6bx}{c}\) Cm : \(\dfrac{3x}{a}=\dfrac{5y}{2b}=\dfrac{7z}{3c}\)
Cho : \(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\) Tính M biết :
M =\(\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Cho :\(\dfrac{a}{b}=\dfrac{c}{d}CMR:\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}v\text{à}\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
cho \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}\)tính giá trị biểu thức\(A=\dfrac{-2x+y+5z}{2x-3x-6z}\)với x,y,z\(\ne\)0 và 2x-3y-6z\(\ne\)0
Cho : a;b ;c \(\ne\) 0 và khác nhau tm :
\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\) . Tính :
P = \(\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\)
Tìm x và y biết :
\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\);\(\dfrac{y}{4}\)=\(\dfrac{z}{5}\) và x+y-z=10
cho \(\dfrac{1}{c}\)=\(\dfrac{1}{2}\)\((\dfrac{1}{a}\)+\(\dfrac{1}{b}\))(với a,b,c \(\ne\)0;b\(\ne\)c)
chứng minh rằng \(\dfrac{a}{b}\)=\(\dfrac{a-c}{c-b}\)
Cm ta có tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) nếu có đẳng thức:
( a + b + c + d ).(a-b-c+d ) = ( a-b+c-d).(a+b-c-d)