\(b,\frac{1978\cdot1979+1980\cdot21+1958}{1980\cdot1979-1978\cdot1979}\\ =\frac{1978\cdot1979+\left(1979+1\right)\cdot21+1958}{1979\left(1980-1978\right)}\\ =\frac{1978\cdot1979+1979\cdot21+\left(21+1958\right)}{1979\cdot2}\\ =\frac{1978\cdot1979+1979\cdot21+1979}{1979\cdot2}\\ =\frac{1979\left(1978+21+1\right)}{1979\cdot2}\\ =\frac{2000}{2}\\ =1000\)
\(\frac{1978.1979+1980.21+1958}{1980.1979-1978.1979}=\frac{1978.1979+1979.21+21+1958}{1979\left(1980-1978\right)}=\frac{1979.1978+1979.21+1979}{1979.2}=\frac{1979\left(1978+21+1\right)}{1979.2}=\frac{2000}{2}=1000\)