Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Thuận

\(B=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{4}}+\dfrac{1}{\sqrt{4}-\sqrt{5}}+...+\dfrac{1}{\sqrt{100}+\sqrt{101}}\)

Học tốt
12 tháng 1 2019 lúc 21:38

Sửa dấu trừ thành + pk bạn

Akai Haruma
12 tháng 1 2019 lúc 21:50

Lời giải:

Sửa đề: \(B=\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+\frac{1}{\sqrt{4}-\sqrt{5}}-....+\frac{1}{\sqrt{100}-\sqrt{101}}\)

Sử dụng công thức \(a-b=(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})\) với \(a,b>0\) ta có:

\(B=-\frac{1}{\sqrt{3}-\sqrt{2}}+\frac{1}{\sqrt{4}-\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{4}}+....-\frac{1}{\sqrt{101}-\sqrt{100}}\)

\(=-\frac{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}{\sqrt{3}-\sqrt{2}}+\frac{(\sqrt{4}-\sqrt{3})(\sqrt{4}+\sqrt{3})}{\sqrt{4}-\sqrt{3}}-\frac{(\sqrt{5}-\sqrt{4})(\sqrt{5}+\sqrt{4})}{\sqrt{5}-\sqrt{4}}+....-\frac{(\sqrt{101}-\sqrt{100})(\sqrt{101}+\sqrt{100})}{\sqrt{101}-\sqrt{100}}\)

\(=-(\sqrt{3}+\sqrt{2})+(\sqrt{4}+\sqrt{3})-(\sqrt{5}+\sqrt{4})+...-(\sqrt{101}+\sqrt{100})\)

\(=-\sqrt{101}-\sqrt{2}\)


Các câu hỏi tương tự
Nguyễn Thị Mỹ Hoa
Xem chi tiết
PTTD
Xem chi tiết
Tấn Phát
Xem chi tiết
34 9/10 Chí Thành
Xem chi tiết
Tiến Đỗ
Xem chi tiết
Ngọc Băng
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Nguyễn Trâm
Xem chi tiết
Ngô Khánh Ngọc
Xem chi tiết