Cho hình thang ABCD có đáy lớn CD. Qua A vẽ đường thẳng song song với BC cắt DC tại K. Qua B vẽ đường thẳng song song với AD cắt DC tại I..BI cắt AC tại F, AK cắt BD tại E. Chứng minh rằng:
a)Tam giác AFB đồng dạng với tam giác CFI
b) AE. KD = AB. EK
c) AB2 = CD. EF
Giúp e ý c với
1,Cho tam giác ABC nhọn với H là trực tâm. Gọi M là trung điểm của BC. Các đường trung trực của AC và BC cắt nhau tại O. Chứng minh: AH = 2OM
2, Cho hình thang ABCD có đáy lớn là CD. Qua A kẻ đường thẳng AK song song BC ( K thuộc CD ). Qua điểm B kẻ đường thẳng BI song song AD ( I thuộc CD ). BI cắt AC tại F; AK cắt BD tại E. Chứng minh rằng:
a, EF song song AB
b, AB2 = CD.EF
Cho ΔABC vuông tại A, đường cao AH; AB= 21 cm, AC=28cm. Tia phân giác của góc A cắt BC tại D. Từ H kẻ đường thẳng song song với AC cắt AB tại M, đường thẳng song song với AB cắt AC tại N
a) Tứ giác AMHN là hình gì? Vì sao?
b) Tính độ dài BC, AH
c) Chứng minh ΔBHA ~ ΔAHC. Tính tỉ số diện tích ΔBHA ~ ΔAHC
d) Tính độ dài các đoạn thẳng CD và BD
e) Chứng minh: \(\dfrac{AM}{AB}+\dfrac{AN}{AC}=1\)
Cho tứ giác ABCD, AC và BD cắt nhau tại O. Đường thẳng song song với BC cắt AB ở E; đường thẳng song song với CD qua O cắt AD tại F.
a. Chứng minh: EF//BD.
*b. Từ O kẻ các đường thẳng song song với AB,AD cắt AD,CD tại G và H. Chứng minh: CG.DH=BG.CH.
giải hộ vs =(((
Cho hình thang ABCD (AB // CD, AB < CD).Hai đường chéo AC và BD cắt nhau tại O. Qua A vẽ đường thẳng song song với BC cắt BD ở E và cắt CD ở K. Qua B kẻ đường thẳng song song với AD cắt AC ở F và cắt CD ở I. Chứng minh rằng:
a) EF // CD
b) AB2 = CD.EF
Cho hình thang ABCD (AB // CD, AB < CD).Hai đường chéo AC và BD cắt nhau tại O. Qua A vẽ đường thẳng song song với BC cắt BD ở E và cắt CD ở K. Qua B kẻ đường thẳng song song với AD cắt AC ở F và cắt CD ở I. Chứng minh rằng:
a) EF // CD
b) AB2 = CD.EF
Cho hình thang ABCD có đáy nhỏ CD. Từ D vẽ đường thẳng song song BC, cắt AC tại M và AB tại K. Từ C vẽ đường thẳng song song Ad cắt AB tại F. Qua F kẻ đường thẳng song song AC, cắt BC tại P. Chứng minh rằng:
a) MP // AB
b) Ba đường thẳng MP, CF, DB đồng quy
Cho tam giác ABC vuông tại A (AB<AC), có đường cao AH.
a) Chứng minh tam giác BHA đồng dạng tam giác BAC b) Vẽ BD là đường phân giác của tam giác ABC cắt AH tại K. Chứng minh BA.BK=BD.BH c) Qua C vẽ đường thẳng vuông góc với BD tại E. Chứng minh: AE=EC d) Kéo dài BA và CE cắt nhau tại M. MD cắt BC tại I. Chứng minh EB là tia phân giác góc IEACho tam giác ABC (AB<AC) có đường cao AD (D thuộc BC)
a/ Chứng minh hai tam giác DAB và ACB đồng dạng
b/ Phân giác góc ABC cắt AC tại E, từ C vẽ đường thằng vuông góc với đường thẳng BE tại F chứng minh AE.AB=EC.BD
c/ Kẻ FH vuông AC tại H chứng minh hai góc BCF và HCF bằng nhau
d/ I là trung điểm BC, chứng minh I,H,F thẳng hàng