Xét (O) có
MN là tiếp tuyến có N là tiếp điểm
MA là tiếp tuyến có A là tiếp điểm
Do đó: MN=MA
Xét (O) có
MN là tiếp tuyến có N là tiếp điểm
MA là tiếp tuyến có A là tiếp điểm
Do đó: MN=MA
Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc một nửa mặt phẳng bờ AB). Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N
a) Tính số đo góc MON
b) Chứng minh rằng MN = AM + BN
c) Chứng minh rằng \(AM.BN=R^2\) (R là bán kính của nửa đường tròn)
Cho đường tròn (O; R) đường kính AB. Vẽ các tia tiếp tuyến Ax, By với nửa đường tròn. Lấy điểm M di động trên tía Ax, điểm N di động trên tia Oy sao cho AM.BN = R2 . Chứng minh rằng a) MN là tiếp tuyến của đường tròn (O) b) Đường tròn ngoại tiếp tam giác OMN luôn tiếp xúc với một đường thẳng cố định.
(ko cần vẽ hình)Cho nửa đường tròn (O) đường kính AB. Kẻ các tiếp tuyến Ax, By của nửa đường tròn. Qua điểm M bất kỳ thuộc nửa đường tròn (M khác A và B) kẻ tiếp tuyến với nửa đường tròn cắt Ax, By thứ tự tại C và D. Chứng minh rằng:
1) góc COD = \(90^o\)
2) CD = AC + BD
3) Tích AC.BD không đổi khi M di chuyến trên nửa đường tròn
Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N.
a. Tính số đo góc MON
b. Chứng minh rằng MN = AM + BN
c. Chứng minh rằng AM.BN = R2 (R là bán kính của nửa đường tròn)
giúp với ạ
Cho nửa đường tròn tâm O đường kính AB. Gọi Ax,By là các tia vuông góc với AB (Ax,By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N.
a) Tìm vị trí của điểm C để chu vi AMNB nhỏ nhất
b) Xác định vị trí của điểm M và N để chu vi AMNB=14cm ( Biết AB=4cm)
Mọi người ơi giúp mình gấp 2 bài này với
Bài 1: Cho nửa đường tròn tâm O đường kính AB, tiếp tuyến Ax với nửa đường tròn. Qua C thuộc nửa đường tròn kẻ tiếp tuyến với nửa đường tròn cắt Ax tại M. Kẻ CH vuông góc AB cắt BM tại I. CM: IC=IH
Bài 2: Cho nửa đường tròn tâm O đường kính AB. Từ A và B vẽ tiếp tuyến Ax, By thuộc nửa đường tròn. Lấy M thuộc nửa đường tròn, vẽ tiếp tuyến thứ ba cắt Ax tại C, By tại D. BM giao Ax tại A', AM giao By tại B'. CM:
a,△A'AB đồng dạng với △ABB' và từ đó suy ra AA'.BB'=AB2
b,CA=CA' DB=DB'
c,B'A', DC, AB đồng quy
Mong mọi người vẽ hình cùng lời giải cho mình với ạ
Cảm ơn mọi người nhiều
Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua một điểm M thuộc nửa đường tròn, kẻ tiếp tuyến thứ ba cắt Ax, By theo thứ tự ở C, D. Gọi N là giao điểm của AD và BC, H là giao điểm của MN và AB. Chứng minh rằng :
a) \(MN\perp AB\)
b) \(MN=NH\)
Cho nửa(O;R) đường kính AB kẻ tiếp tuyến Ax;By với nửa O lấy M tùy ý trên nửa O tiếp tuyến tạo M cắt Ax;By tại C và D chứng minh COD=90 và CD=AC+BD b) AD cắt BC tại N chứng minh MN song song AC c) MN cắt AB tại H chứng minh MN là trung điểm MH