cho tam giác ABC có AB< AC và AD là tia phân giác góc D (D thuộc BC) . Kẻ AH vuông góc với BC ( H thuộc BC ) và gọi M là trung điểm của BC . Chứng minh rằng : Tia AD nằm giữa hai tia AH và AM
Cho Tam giác ABC vuông cân tại A. Điểm E nằm giữa A và C, kẻ tia Ex sao cho EB là tia phân giác của góc AEx. Tia Ex cắt đường thẳng vuông góc với AC kẻ từ C tại K. Chứng minh EK<AB
Cho góc xOy. Lấy điểm A trên tia Ox, điểm B trên tia Oy. Vẽ các tia phân giác của các góc BAx và ABy cắt nhau tại M.
A) Chứng minh OM là tia phần giác góc xOy.
b) Từ M vẽ một đường thẳng vuông góc với OM, cắt Ox, Oy lần lượt tại C và D. Chứng minh rằng tam giác OCD cân.
LÀM ƠN PLEASE !!! MIK CẦN GẤP
Cho tam giác ABC vuông tại A, đường cao AH.
a. Chứng minh DABC đồng dạng với DHBA, từ đó suy ra ;
b. Tia phân giác của góc ABC cắt AH tại I. Chứng minh rằng ;
c. Tia phân giác của góc HAC cắt BC tại K. Chứng minh song song với .
a)C/M ΔABD=ΔHBD
b)C/M BD là đường trung trực của AH
c)C/m ba điểm B,A,K thẳng hàng
Cho tam giác ABC vuông ở C, có góc A bằng 600. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông góc với AB (K thuộc AB). Kẻ BD vuông góc với tia AE (D thuộc tia AE). C/M:
a) AC = AK và AE vuông góc CK.
b) EA = EB
c) EB > AC.
cho ABC (A=90 độ) BD là tia phân giác của góc B (D thuộc AB). trên tia BC lấy điểm E sao cho BA=BE: a) chứng minh DE vuông góc với BE ;b) chứng minh BD là đường trung trực của AE ;c) kẻ AH vuông góc BC, so sánh EH và EC
Cho tam giác ABC cân tại B ( góc B = 90° ) Kẻ AD vuông góc với BC, CE vuông góc vs AB ( D thuộc cạnh BC , E thuộc cạch AB ) a) Chứng minh ∆ BAD = ∆ BCE b) Gọi F là giao điểm của AD và CE. chứng minh BF là tia phân giác của góc ABC c) chứng minh FA > AC/2
Cho tam giác ABC.ABC. Chứng minh rằng giao điểm của hai tia phân giác của hai góc ngoài B1B1 và C1C1 (h. 32) nằm trên tia phân giác của góc A.