a, ĐKXĐ : \(x-1\ne0\)
=> \(x\ne1\)
TH1 : \(x-2\ge0\left(x\ge2\right)\)
=> \(\left|x-2\right|=x-2=1\)
=> \(x=3\left(TM\right)\)
- Thay x = 3 vào biểu thức P ta được :
\(P=\frac{3+2}{3-1}=\frac{5}{2}\)
TH2 : \(x-2< 0\left(x< 2\right)\)
=> \(\left|x-2\right|=2-x=1\)
=> \(x=1\left(KTM\right)\)
Vậy giá trị của P là \(\frac{5}{2}\) .
a) \(P=\frac{x+2}{x-1}\) \(\left(ĐKXĐ:x\ne1\right)\)
Ta có: \(\left|x-2\right|=1\text{⇔}\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) (loại x = 1 vì x ≠ 1)
Thay \(x=3\) vào P, ta có:
\(P=\frac{3+2}{3-2}=\frac{5}{1}=5\)
Vậy P = 5 tại x = 3.
b) \(Q=\frac{x-1}{x}+\frac{2x+1}{x^2+x}=\frac{x-1}{x}+\frac{2x+1}{x\left(x+1\right)}=\frac{x^2-1}{x\left(x+1\right)}+\frac{2x+1}{x\left(x+1\right)}\) (ĐKXĐ: x ≠ 0, x ≠ -1)
\(=\frac{x^2+2x}{x\left(x+1\right)}=\frac{x\left(x+2\right)}{x\left(x+1\right)}=\frac{x+2}{x+1}\)