\(125-x^6=0\)
\(\Leftrightarrow5^3-\left(x^2\right)^3=0\)
\(\Leftrightarrow\left(5-x^2\right)\left(5^2+5x^2+x^4\right)=0\)
Ta có: \(5^2+5x^2+x^4=\left(x^2+\dfrac{5}{2}\right)^2+\dfrac{75}{4}>0\forall x\)
Vì vậy \(5-x^2=0\)
\(\Leftrightarrow x^2=5\Leftrightarrow x=\pm\sqrt{5}\)
Vậy \(x_1=\sqrt{5};x_2=-\sqrt{5}\).