a) 2x-3y+5=0
Giả sử x=0⇒y=\(\frac{5}{3}\)
⇒d đi qua A(2:0)
⇒vtpt n1=(2;-3)
thay tt tìm đc vtpt n2=(3;7)
ADCT tính góc cos tìm đc gócφ =56'53
b)giải tt như câu a
a) 2x-3y+5=0
Giả sử x=0⇒y=\(\frac{5}{3}\)
⇒d đi qua A(2:0)
⇒vtpt n1=(2;-3)
thay tt tìm đc vtpt n2=(3;7)
ADCT tính góc cos tìm đc gócφ =56'53
b)giải tt như câu a
giải các hệ bất phương trình sau :
a, \(\left\{{}\begin{matrix}2x^2+9x+7>0\\x^2+x-6< 0\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}2x^2+x-6>0\\3x^2-10x+3\ge0\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}-x^2+4x-7< 0\\x^2-2x-1\ge0\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}-2x^2-5x+4< 0\\-x^2-3x+10>0\end{matrix}\right.\)
xin giúp mình -.-
Bài 3. Xác định m để hệ bất phương trình sau có nghiệm, vô nghiệm, có nghiệm duy nhất?a)\(\left\{{}\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}x-1>0\\mx-3>0\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}x+4m^2\le2mx+1\\3x+2>2x-1\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}7x-2\ge-4x+19\\2x-3m+2< 0\end{matrix}\right.\) e)\(\left\{{}\begin{matrix}mx-1>0\\\left(3m-2\right)x-m>0\end{matrix}\right.\)
Trong mặt phảng 0xy , cho điểm A(2;-1) và đường thẳng d:\(\left\{{}\begin{matrix}x=1+t\\y=2-3t\end{matrix}\right.\)phương trình đường thẳng d' đi qua A và vuông góc với d là
Tìm các giá trị của m để hệ sau vô nghiệm:
\(\left\{{}\begin{matrix}-2x^2+2x-1< 0\\x^2-mx+m+3< 0\end{matrix}\right.\)
Miền nghiệm của hệ phương trình \(\left\{{}\begin{matrix}3x-4y+12\ge0\\x+y+5\ge0\\x+1>0\end{matrix}\right.\)là miền chứa điểm nào trong các điểm sau
A.M(2;5)
B.N(1;-7)
C.P(1;-2)
D.Q(-2;-3)
Hệ bất phương trình \(\left\{{}\begin{matrix}2x-1>0\\x-m< 2\end{matrix}\right.\) có nghiệm khi và chỉ khi
Bài 4: Cho đường thẳng d: \(\left\{{}\begin{matrix}x=1+2t\\y=-3-5t\end{matrix}\right.\)
Tìm điểm M trên đường thẳng d sao cho M cách đều hai điểm A(1; 1) và B(2; -3).
Trong các suy luận sau, suy luận nào đúng ?
(A) \(\left\{{}\begin{matrix}x< 1\\y< 1\end{matrix}\right.\)\(\Rightarrow xy< 1\) (B) \(\left\{{}\begin{matrix}x< 1\\y< 1\end{matrix}\right.\)\(\Rightarrow\dfrac{x}{y}< 1\)
(C) \(\left\{{}\begin{matrix}0< x< 1\\y< 1\end{matrix}\right.\) \(\Rightarrow xy< 1\) (D)\(\left\{{}\begin{matrix}x< 1\\y< 1\end{matrix}\right.\) \(\Rightarrow x-y< 0\)
Giải hệ phương trình \(\left\{{}\begin{matrix}2x^2-y^2-4\left(x-y\right)=1\\x^2\left(x-2\right)^2+2=\left(xy-2y\right)\left(xy-4x\right)\end{matrix}\right.\)