Bài 3. Xác định m để hệ bất phương trình sau có nghiệm, vô nghiệm, có nghiệm duy nhất?a)\(\left\{{}\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}x-1>0\\mx-3>0\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}x+4m^2\le2mx+1\\3x+2>2x-1\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}7x-2\ge-4x+19\\2x-3m+2< 0\end{matrix}\right.\) e)\(\left\{{}\begin{matrix}mx-1>0\\\left(3m-2\right)x-m>0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2x+1-m>0\\mx+2m-1< 0\end{matrix}\right.\) tìm m để hệ có nghiệm duy nhất
giải các hệ bất phương trình sau :
a, \(\left\{{}\begin{matrix}2x^2+9x+7>0\\x^2+x-6< 0\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}2x^2+x-6>0\\3x^2-10x+3\ge0\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}-x^2+4x-7< 0\\x^2-2x-1\ge0\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}-2x^2-5x+4< 0\\-x^2-3x+10>0\end{matrix}\right.\)
xin giúp mình -.-
Hệ bất phương trình \(\left\{{}\begin{matrix}2x-1>0\\x-m< 2\end{matrix}\right.\) có nghiệm khi và chỉ khi
Tìm m để hệ vô nghiệm \(\left\{{}\begin{matrix}x^2+10x+16\le0\\mx>3m+1\end{matrix}\right.\)
Tìm m để hệ bất phương trình sau vô nghiệm :
\(\left\{{}\begin{matrix}x^2-\left(4+m\right)x+4m\le0\\x-5>0\end{matrix}\right.\)
Tính tổng tất cả các giá trị m để hệ :
\(\left\{{}\begin{matrix}x^2+4x+m-2\le0\\x^2-2x-m+2\le0\end{matrix}\right.\)
Tổng các nghiệm nguyên của hệ bất phương trình \(\left\{{}\begin{matrix}x-5\le0\\x-5>0\end{matrix}\right.\) là
Miền nghiệm của hệ phương trình \(\left\{{}\begin{matrix}3x-4y+12\ge0\\x+y+5\ge0\\x+1>0\end{matrix}\right.\)là miền chứa điểm nào trong các điểm sau
A.M(2;5)
B.N(1;-7)
C.P(1;-2)
D.Q(-2;-3)