bài 3 chứng minh rằng nếu a,b là các số nguyên tố lớn hơn 2 thì a^3b- ab^2 chia hết cho 240
bài 3 chứng minh rằng nếu a,b là các số nguyên tố lớn hơn 2 thì a^3b- ab^2 chia hết cho 240
a)Giải phương trình [(2-x2)/2015]-1=[(1-x2)/2016]-[x2/2017]
b)giải phương trình nghiệm 1/x - 1/y +1/xy = 1/2
c) cho hai số a và b thoả mãn a lớn hơn hoặc 1 và b lớn hơn hoặc bằng 1 chứng minh [1/(1+a^2)]+[1/(1+b^2)] lớn hơn hoặc bằng 2/(1+ab)
1) Cho 2 số dương x,y thỏa mãn: \(x^3+y^3=x-y\).Chứng minh rằng: \(x^2+y^2< 1\)
2) Cho 3 số a,b,c thỏa mãn: \(a^2+b^2+ab+bc+ca< 0\). Chứng minh rằng: \(a^2+b^2< c^2\)
Cho các số dương a và b thỏa mãn \(a^3+b^3=a-b\) .
Chứng minh rằng : \(a^2+b^2+ab< 1\)
Chứng minh rằng: nếu a+b+c=0 thì (a+b)2(b+c)2(c+a)2=(a+bc)(b+ca)(c+ab)
218.
a) Chứng minh rằng với mọi \(n\in\) N*, thì:
\(A=n^5-5n^3+4n\) chia hết cho 120
b) Chứng minh rằng tích của bốn số tự nhiên liên tiếp cộng thêm 1 là một số chính phương
cho a,b,c > 0 chứng minh rằng:
a) \(\frac{a^3}{b}\) ≥ a2 + ab - b2
b) \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\) ≥ ab+bc+ca
cho a,b,c là các số thực
chứng minh rằng
a2+b2+c2+3\(\ge\)2(a+b+c)