Tổng các chữ số của nó là số lẻ khi số chữ số lẻ của nó là lẻ
Các trường hợp thỏa mãn: 1 lẻ 5 chẵn, 3 lẻ 3 chẵn, 5 lẻ 1 chẵn
TH1: 1 lẻ 5 chẵn:
Chọn 1 chữ số lẻ từ 5 chữ số lẻ (1;3;5;7;9) có \(C_5^1\) cách
Chọn 5 chữ số chẵn từ 5 chữ số chẵn (0;2;4;6;8) có \(C_5^5\) cách
Hoán vị 6 chữ số rồi trừ đi trường hợp số 0 đứng đầu: \(6!-5!\) cách
\(\Rightarrow C_5^1.C_5^4.\left(6!-5!\right)=3000\) số
TH2: 3 lẻ 3 chẵn.
Ta có \(C_5^3\) cách chọn 3 chữ số lẻ
Chọn 3 chữ số chẵn bất kì: \(C_5^3\) cách
Hoán vị chúng: \(6!\) cách
\(\Rightarrow C_5^3.C_5^3.6!\) số (tính cả trường hợp 0 đứng đầu)
Chọn 3 chữ số chẵn sao cho có mặt chữ số 0: \(C_4^2\) cách
Hoán vị 6 chữ số sao cho 0 đứng đầu: \(5!\) cách
\(\Rightarrow C_5^3.C_4^2.5!\) cách
\(\Rightarrow C_5^3.C_5^3.6!-C_5^3.C_4^2.5!=64800\) số
TH3: 5 lẻ 1 chẵn
Chọn 5 chữ số lẻ: \(C_5^5=1\) cách
Chọn 1 chữ số chẵn bất kì: 5 cách
Chọn chữ số chẵn sao cho nó là số 0: 1 cách
Hoán vị 6 chữ số 1 cách bất kì: \(6!\) cách
Hoán vị 6 chữ số sao cho số 0 đứng đầu: \(5!\) cách
\(\Rightarrow1.\left(5.6!-1.5!\right)=3480\) số
Cộng 3 TH lại ta có đáp án