a) AD = DM ( gt )
⇒ ∆ ADM cân
⇒ \(\widehat{DAM}=\widehat{AMD}\)
mà \(\widehat{DAM}=\widehat{AMD}\) ( 2 góc so le trong )
⇒ \(\widehat{DAM}=\widehat{BAM}\)
⇒ AM la tia phân giác \(\widehat{A}\)
Do AD = BC (ABCD là hình bình hành)
⇒ BC = MC
⇒ △ CMB cân
⇒ \(\widehat{CMB}=\widehat{CBM}\)
mà \(\widehat{ABM}=\widehat{CMB}\) (2 góc so le trong do AB // MC)
⇒ \(\widehat{ABM}=\widehat{CBM}\)
⇒ BM là tia phân giác của \(\widehat{B}\)
b) Lấy E là trung điểm của AB
ta có AE = DM ( do AB = DC)
mà AE // DM ( do AB // CD )
⇒ Tứ giác AEDM là hình bình hành
⇒ AD = EM
mà AD =\(\dfrac{1}{2}\) AB
⇒ EM = \(\dfrac{1}{2}\) AB
⇒ ∆ AMB vuông tại M (vì trong tam giác có đường trung tuyến ứng với một cạnh bằng một nửa cạnh ấy thì tam giác đó là tam giác vuông)
⇒ \(\widehat{AMB}=90^0\) ( đpcm )
1: Ta có: AB=2AD
mà AB=CD
nên CD=2AD
mà \(CD=2\cdot MD\cdot MC\)
nên AD=DM=MC=BC
Xét ΔAMD có DA=DM
nên ΔAMD cân tại D
Suy ra: \(\widehat{DAM}=\widehat{DMA}\)
mà \(\widehat{DMA}=\widehat{MAB}\)
nên \(\widehat{DAM}=\widehat{BAM}\)
hay AM là tia phân giác của \(\widehat{DAB}\)
Xét ΔBCM có MC=MB
nên ΔBMC cân tại C
Suy ra: \(\widehat{CMB}=\widehat{CBM}\)
mà \(\widehat{CMB}=\widehat{ABM}\)
nên \(\widehat{CBM}=\widehat{ABM}\)
hay BM là tia phân giác của \(\widehat{ABC}\)
2: Gọi K là trung điểm của AB
Ta có: \(AK=\dfrac{AB}{2}\)
\(DM=\dfrac{DC}{2}\)
mà AB=DC
nên AK=DM
Xét tứ giác AKMD có
AK//MD
AK=MD
Do đó: AKMD là hình bình hành
mà AD=DM
nên AKMD là hình thoi
Suy ra: MK=AK
mà \(AK=\dfrac{AB}{2}\)
nên \(MK=\dfrac{AB}{2}\)
Xét ΔMAB có
MK là đường trung tuyến ứng với cạnh AB
\(MK=\dfrac{AB}{2}\)
Do đó: ΔMAB vuông tại M