\(A=x^2-20x+101=\left(x-10\right)^2+1\ge1\)
\(minA=1\Leftrightarrow x=10\)
\(B=2x^2+40x-1=2\left(x+10\right)^2-201\ge-201\)
\(minB=-201\Leftrightarrow x=-10\)
\(C=x^2-4xy+5y^2-2y+28=\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)+27=\left(x-2y\right)^2+\left(y-1\right)^2+27\ge27\)
\(minC=27\Leftrightarrow\)\(\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)
\(D=\left(x-2\right)\left(x-5\right)\left(x^2-7x-10\right)=\left(x^2-7x+10\right)\left(x^2-7x+10\right)=\left(x^2-7x\right)^2-100\ge-100\)
\(minD=100\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
a: Ta có: \(A=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=10
b: ta có: \(B=2x^2+40x-1\)
\(=2\left(x^2+20x-\dfrac{1}{2}\right)\)
\(=2\left(x^2+20x+100-\dfrac{201}{2}\right)\)
\(=2\left(x+10\right)^2-201\ge-201\forall x\)
Dấu '=' xảy ra khi x=-10