Bài 1:
a) x2 + 5x = 0
⇔ x(x + 5) = 0
⇔ \(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x-0\\x=-5\end{matrix}\right.\)
b) (12x3 - 8x) : x - 4x(3x - 1) = 0
⇔ 12x2 - 8 - 12x2 + 4x = 0
⇔ 4x - 8 = 0
⇔ 4x = 8
⇔ x = 2
Bài 2:
\(P=\dfrac{x^2-12x+36}{2x^2-72}\)
\(=\dfrac{\left(x-6\right)^2}{2\left(x^2-6^2\right)}\)
\(=\dfrac{\left(x-6\right)^2}{2\left(x-6\right)\left(x+6\right)}\)
\(=\dfrac{x-6}{2\left(x+6\right)}\)
Bài 1:
a,\(x^2+5x=0\)
\(x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy...
b,Cái dấu ở giữa \(x^3\) với 8 là trừ hay nhân vậy?
Bài 2:
\(P=\dfrac{x^2-12x+36}{2x^2-72}\)
\(=\dfrac{\left(x-6\right)^2}{2\left(x^2-36\right)}\)
\(=\dfrac{\left(x-6\right)^2}{2\left(x-6\right)\left(x+6\right)}\)
\(=\dfrac{x-6}{2\left(x+6\right)}\)
\(=\dfrac{x-6}{2x+12}\)