Bài 2: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hà Nguyễn

Bài 1:Cho tam giác ABC vuông tại A, AB<AC . Đường trung trực của BC cắt BC tại M, cắt AC tại N. Lấy điểm K trên đoạn thẳng CN. Hãy so sánh:

a) NB và NC

b) BK và CN

Bài 2:Cho tam giác ABC vuông tại A. Vẽ AH ⊥ BC (H ∈ BC) . Cho biết BAH < CAH. Hãy so sánh:

a)B và C

b) HB với HC

Nguyễn Lê Phước Thịnh
3 tháng 5 2020 lúc 20:41

Bài 1:

a) Ta có: M∈BC(gt)

mà M nằm trên đường trung trực của BC(gt)

nên M là trung điểm của BC

Xét ΔNBM vuông tại M và ΔNCM vuông tại M có

NM là cạnh chung

BM=CM(M là trung điểm của BC)

Do đó: ΔNBM=ΔNCM(hai cạnh góc vuông)

⇒NB=NC(hai cạnh tương ứng)

b) Ta có: ΔANB vuông tại A(AB⊥AC, N∈AC)

nên \(\widehat{ANB}< 90^0\)

Ta có: \(\widehat{ANB}+\widehat{KNB}=180^0\)(hai góc kề bù)

\(\widehat{ANB}< 90^0\)

nên \(\widehat{KNB}>90^0\)

Xét ΔKNB có \(\widehat{KNB}>90^0\)(cmt)

mà cạnh đối diện với \(\widehat{KNB}\) là BK

nên BK là cạnh lớn nhất trong ΔKNB(Trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất)

hay BK>BN

mà BN=CN(cmt)

nên BK>CN

Bài 2:

a) Xét ΔAHB vuông tại H có \(\widehat{BAH}+\widehat{B}=90^0\)(hai góc phụ nhau)(1)

Xét ΔAHC vuông tại H có \(\widehat{CAH}+\widehat{C}=90^0\)(hai góc phụ nhau)(2)

Từ (1) và (2) suy ra \(\widehat{BAH}+\widehat{B}=\widehat{CAH}+\widehat{C}\)

\(\widehat{BAH}< \widehat{CAH}\)

nên \(\widehat{B}>\widehat{C}\)

b) Xét ΔABC có \(\widehat{B}>\widehat{C}\)(cmt)

mà cạnh đối diện với \(\widehat{B}\) trong ΔABC là cạnh AC

và cạnh đối diện với \(\widehat{C}\) trong ΔABC là cạnh AB

nên AC>AB(định lí 2 về quan hệ giữa góc và cạnh đối diện trong tam giác)

Xét ΔABC có AC>AB(cmt)

mà HC là hình chiếu của AC trên BC

và HB là hình chiếu của AB trên BC

nên HC>HB(Định lí 2b về quan hệ giữa đường vuông góc và đường xiên; đường xiên và hình chiếu)

hay HB<HC

santa
3 tháng 5 2020 lúc 20:48

Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu

a, Xét ∆BMN vuông tại M và ∆CMN vuông tại M có

BM = CM (M là trung điểm BC)

MN : chung

=>∆BMN = ∆CMN (c.g.c)

=> BN = CM (2 cạnh tương ứng)

b, Xét ∆ABN vuông tai A

=> ANB nhọn

=> BNK tù (ANB và BNK kề bù )

Xét ∆BNK có BNK là góc tù

=> BK > BN (cạnh dối diện vs góc tù cạnh lớn nhất trong ∆)

Mà BN = CN (cmt)

=> BK > CN


Các câu hỏi tương tự
Hà Nguyễn
Xem chi tiết
nguyễn ngọc bách
Xem chi tiết
xuân tiến cao
Xem chi tiết
ANH DUY
Xem chi tiết
Trần Phan Ngọc Lâm
Xem chi tiết
Nguyễn Hồng Nhung
Xem chi tiết
Lê Ngọc Trường Giang
Xem chi tiết
đan nguyễn
Xem chi tiết
Trần Hương Lan
Xem chi tiết