a) Sửa đề: Tính AC và BC
Ta có: \(\dfrac{AC}{BC}=\dfrac{3}{5}\)(gt)
nên \(\dfrac{AC}{8}=\dfrac{3}{5}\)
\(\Leftrightarrow AC=\dfrac{3\cdot8}{5}=\dfrac{24}{5}=4.8\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AC^2+AB^2=BC^2\)
\(\Leftrightarrow AB^2=BC^2-AC^2=8^2-4.8^2=40.96\)
hay AB=6,4(cm)
Vậy: AC=4,8cm; AB=6,4cm
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot8=4.8\cdot6.4=30.72\)
hay \(AH=3.84cm\)
Vậy: AH=3,84cm