Bài 1)Cho ΔABC vuông ở A,đường cao AH.Tính chu vi ΔABC,biết AH =14cm; \(\dfrac{HB}{HC}=\dfrac{1}{4}\)
Bài 2)Cho ΔCDE nhọn,đường cao CH.Gọi M,N theo thứ tự là hình chiếu của H
-GIÚP MÌNH VỚI Ạ- :(((
Bài 1)Cho ΔABC vuông ở A,đường cao AH.Tính chu vi ΔABC,biết AH =14cm; \(\dfrac{HB}{HC}=\dfrac{1}{4}\)
Bài 2)Cho ΔCDE nhọn,đường cao CH.Gọi M,N theo thứ tự là hình chiếu của H
-GIÚP MÌNH VỚI Ạ- :(((
Cho ΔABC vuông tại A, đường cao AH. Cho biết AB = 12cm, AC = 16cm
a) Giải tam giác ABC vuông ABC
b) Gọi E, F lần lượt là hình chiếu của H trên AB và AC ( E ∈ AB, F ∈ AC). Chứng minh: \(\dfrac{AF}{CH}=\dfrac{BF}{AC}\)
c) Cho BC cố định, tìm vị trí của A để diện tích hình chữ nhật AEHF lớn nhất
Cho tam giác ABC vuông tại A , đường cao AH , Biết HC-HB=9cm và AH=6cm . Tính độ dài HB,HC ?
cho ΔABC vuông tại A, đường cao AH = 2, C^ = 30o . Tính AB
Cho ΔABC vuông tại A. Chứng minh: Tan \(\dfrac{ABC}{2}=\dfrac{AB}{AB+BC}\)
Bài 1 : Cho tam giác ABC vuông tại A , đường cao AH , có HB =9 cm , HC =16cm . Tính góc B và góc C
GIẢI GIÚP MÌNH BÀI NÀY VỚI Ạ , MÌNH ĐANG CẦN GẤP
cho tam giác ABCvuông tại A,đường cao AH ;HD;HE lần lượt là đường cao của tam giác AHBvà AHC
chúng minh
a)\(\dfrac{AB^2}{AC}=\dfrac{HB}{HC}\)
B)\(\dfrac{AB^3}{AC^3}=\dfrac{DB}{EC}\)
1) Chứng minh các hệ thức : a) 1+ \(\tan^2_{\alpha}\)=\(\dfrac{1}{\cos^2_{\alpha}}\)
b) \(\dfrac{\cos_{\alpha}}{1-\sin_{\alpha}}\)=1+\(\dfrac{\sin_{\alpha}}{\cos_{\alpha}}\)
2) Cho tam giác ABC vuông tại A , đường cao AH, HD , HE lần lượt là đường cao của của AHB và AHC .
Chứng minh rằng : a) \(\dfrac{AB^2}{AC^2}\) = \(\dfrac{HB}{HC}\) b) \(\dfrac{AB^3}{AC^3}\)= \(\dfrac{DB}{EC}\)
3) Cho tam giác ABC cân tại A , đường cao AH và BK . Chứng minh rằng :
\(\dfrac{1}{BK^2}\)= \(\dfrac{1}{BC^2}\)+ \(\dfrac{1}{4AH^2}\)