b: \(\widehat{C}=2\cdot\widehat{A}=2\cdot35^0=70^0\)
Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=>\(\widehat{B}=180^0-70^0-35^0=75^0\)
Xét ΔABC có \(\widehat{A}< \widehat{C}< \widehat{B}\)
mà BC,AB,AC lần lượt là các cạnh đối diện của các góc A,C,B
nên BC<AB<AC
c: Đặt \(\widehat{A}=a;\widehat{B}=c;\widehat{C}=c\)
Theo đề, ta có: \(\dfrac{a}{5}=\dfrac{b}{6}=\dfrac{c}{7};a+b+c=180\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{6}=\dfrac{c}{7}=\dfrac{a+b+c}{5+6+7}=\dfrac{180}{18}=10\)
=>\(a=10\cdot5=50;b=6\cdot10=60;c=7\cdot10=70\)
=>\(\widehat{A}=50^0;\widehat{B}=60^0;\widehat{C}=70^0\)
Xét ΔABC có \(\widehat{A}< \widehat{B}< \widehat{C}\)
mà BC,AC,AB lần lượt là các cạnh đối diện của các góc A,B,C
nên BC<AC<AB