Bài 1:
Đặt \(h_{\left(x\right)}=0\)
\(\Leftrightarrow x^2-5x+5=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5}{2}=\frac{\sqrt{5}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{5}+5}{2}\\x=\frac{-\sqrt{5}+5}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{5+\sqrt{5}}{2};\frac{5-\sqrt{5}}{2}\right\}\)
Bài 2:
a) Đặt \(f_{\left(x\right)}=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Vậy: S={2}
b) Đặt \(g_{\left(x\right)}=0\)
\(\Leftrightarrow x^3-4x=0\)
\(\Leftrightarrow x\left(x^2-4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy: S={0;2;-2}
c) Đặt \(h_{\left(x\right)}=0\)
\(\Leftrightarrow x^3+8=0\)
\(\Leftrightarrow x^3=-8\)
hay x=-2
Vậy: S={-2}
d) Đặt \(p_{\left(x\right)}=0\)
\(\Leftrightarrow x^3+x^2+x+1=0\)
\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x+1=0\)(vì \(x^2+1>0\forall x\))
hay x=-1
Vậy: S={-1}