Bài 1: Tìm các số tự nhiên \(\overline{abc}\) có ba chữ số khác nhau sao cho 3a + 5b = 8c.
Bài 2: Tìm số tự nhiên có hai chữ số, sao cho số đó bằng:
a) Sáu lần tích các chữ số của số đó
câu 1: Do a,b,c có 1 chữ số và đều là STN nên 10>a,b,c>=0
Ta có 3a + 5b=8c
<=>3a+5b-8b=8c-8b
<=>3a-3b=8b-8c
<=>3(a-b)=8(c-b)
Do (3,8)=1 nên ta có các Trường hợp sau :
TH1 : a-b=8 và c-b=3
khi đó a=8,b=0,c=3
hoặc a=9,b=1,c=4
TH2: a-b = -8 và c-b = -3
khi đó a=1 , b=9 , c=6
Vậy các số thỏa mãn là : 803 , 914 , 196
Cau 2 :
goi so co 2 chu so đó là ab ( có gạch trên đầu nữa nhé )
=> ab= 10a+b
theo bài ra ta có
10a+b=6a.b
<=> 10a+b-6ab=0
Từ đây giả ra , suy ra a và b ......
đến đây em tự làm nhé !