gọi số hs trung bình la a, hs giỏi là b, hs khá là c
theo bài ra ta có: a = 2c => \(\frac{a}{2}=\frac{c}{1}\) => \(\frac{a}{4}=\frac{c}{2}\) ( 1)
b = \(\frac{c}{2}\) (2)
từ 1 và 2 => \(\frac{a}{4}=\frac{c}{2}=\frac{b}{1}\) và a+b+c = 42
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{4}=\frac{c}{2}=\frac{b}{1}=\frac{a+c+b}{4+2+1}=\frac{42}{7}=6\)
=> a= 24
b = 6
c = 12
vậy có 24 hs trung bình, 6 hs giỏi và 12 hs khá
Gọi số học sinh \(\text{giỏi; khá; trung bình}\) của lớp đó lần lượt là \(a;b;c\) \(\left(a;b;c\in N\text{*}\right)\) \(\left(\text{học sinh}\right)\)
Theo bài ra ta có : \(a+b+c=42\)
\(2b=c\Rightarrow b=\dfrac{c}{2}\) \(\left(1\right)\)
\(a=\dfrac{1}{2}b\Rightarrow a=\dfrac{b}{2}\Rightarrow2a=b\Rightarrow\dfrac{a}{\dfrac{1}{2}}=b\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra : \(\dfrac{a}{\dfrac{1}{2}}=b=\dfrac{c}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{a}{\dfrac{1}{2}}=b=\dfrac{c}{2}=\dfrac{a+b+c}{\dfrac{1}{2}+1+2}=\dfrac{42}{\dfrac{7}{2}}=12\)
\(\dfrac{a}{\dfrac{1}{2}}=12\Rightarrow a=6\\ \)
\(b=12\\ \)
\(\dfrac{c}{2}=12\Rightarrow c=24\)
\(\text{Vậy }a=6\\ b=12\\ c=24\)