Bài 1: Chứng minh rằng với mọi n thuộc N*, ta có:
1.2+2.5+3.8+…..n(3n-1) = n^2(n+1)
Có bao nhiêu số tự nhiên gồm 5 chữ số chia hết cho 7
CMR: [ ( 1+ 2 + 3 +...+ n ) - 7 ] không chia hết cho 10
Bài 2: Có 6 học sinh và 2 thầy giáo được xếp thành hàng ngang. Hỏi có bao nhiêu cách xếp sao cho 2 thầy giáo không đứng cạnh nhau.
Bài 3: Từ một cỗ bài túi lơ khơ 52 con, rút ngẫu nhiên cùng lúc 3 con.
a) Tính xác suất của biến cố A: “ Có ít nhất một con át”.
b) Tính xác suất của biến cố B: “ Cả 3 con ghi số khác nhau đều thuộc tập{2,3,...,10}”
từ các chữ số 0 1 2 3 4 5 có thể lập được bao nhiêu số chẵn gồm các chữ số khác nhau và lớn hơn 300.000 !!
Bài 3: Ba xạ thủ cùng bắn vào bia. Kí hiệu Ak là biến cố: “Người thứ k là người bắn trúng”; k=1,2,3.
a) Mô tả không gian mẫu
b) Tính xác suất của các biến cố:
A: “Có ít nhất một người bắn trúng”
B: “Có đúng một người bắn trúng”
Bài 4: Chứng mình rằng với mọi n thuộc N, n>=3, ta có:
1.4+2.7+3.10+…+(n-2)(3n-5) = (n-2)(n-1)^2
Tính: \(I=\lim\limits_{x\rightarrow1}\left(\dfrac{n}{1-x^n}-\dfrac{m}{1-x^m}\right)\) với m,n là các số nguyên.