Bài 1: cho tam giác ABC vuông tại A, đường cao AB, đường phân giác BD. Gọi M là giao điểm của AH và BD
a) CM △BAC đồng dạng △BHA
b) tính độ dài đoạn thẳng BC, AH, HB, HC. Biết AB = 3cm, AC = 4cm
c) chứng minh AM.ad = HM.CD
Bài 2: Cho tam giác ABC vuông góc tại A có AB = 12cm, AC = 16cm. Kẻ đường cao AH (HϵBC)
a) chứng minh △AHB đồng dạng △CAB
b) vẽ đường phân giác AD, (DϵBC). Tnhs BD, CD
Bài 3: cho tam giác ABC có AB = 8cm, AC = 12cm. Trên cạnh AB lấy điểm D sao cho BD = 2cm, trên cạnh AC lấy điểm E sao cho AE = 9cm
a) tính các tỉ số \(\dfrac{AE}{AD}\);\(\dfrac{AD}{AC}\)
b) chứng minh △ADE đồng dạng △ABC
c) đường phân giác BAC cắt BC tại I. Chứng minh IB.AE = IC.AD
3:
a: AE/AD=9/6=3/2
AD/AC=6/12=1/2
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng vơi ΔABC
c: IB/IC=AB/AC=AD/AE
=>IB*AE=IC*AD