Cho tam giác ABC nhọn, ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh tứ giác AEHF là tứ giác nội tiếp. b) Chứng minh tứ giác ABDE là tứ giác nội tiếp. c) Chứng minh DH là tia phân giác của góc EDF
Cho tam giác ABC có 3 goc nhọn. Kẻ các đường cao AD, BE, CF cắt nhau tại H a/ Chứng minh tứ giác BDHF, ACDF, CFHD, ABDE nội tiếp b/ chứng minh DH là tia phân giác của EDF
Cho tam giác ABC nhọn nội tiếp đường tròn (o) có 3 đường cao AD;BE;CF cắt nhau tại H. BE cắt đường tròn (o) tại N,gọi M là điểm đối xứng của H qua D
Chứng minh:
a)Tứ giác DHEC;BCEF nội tiếp
b)Tam giác MCN cân
c)EH là phân giác góc DEF
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O. Các đường cao AD, BE, CF cắt nhau tại H. Kẻ đường kính AK của đường tròn O.
a] Chứng minh AEHF nội tiếp
b]Chứng minh BDHF nội tiếp
c]Chứng minh BHCK là hình bình hành
d]Gọi M là trung điểm BC. Chứng minh AH=20M
Giúp mk vs
cho tam giác ABC có 3 góc nhọn AB<AC. AD,BE,CF là các đường cao. EF giao với BC tại N.Đường thẳng D//EF và cắt AB,AC tại X,Y
a, chứng minh BCEF ,ACDF nội tiếp
b, EB là phân giác góc DEF và AX/AY bằng AC/AB
Cho tam giác ABC nhon nội tiếp đường tròn O. Ba đường cao AD, BE, CF cắt nhau tại H
a) Cmr: Tứ giác AEHF nội tiếp
b) Cmr: Tứ giác BCEF nội tiếp
c) Cmr: Tam giác AEB đồng dạng tam giác AFC
d) Cmr: Tam giác AEF đồng dạng tam giác ABC
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O. Hai đường cao BE và CF cắt nhau tại H. Tia AO cắt đường tròn tại D . Chứng minh
a) tứ giác AEHF nội tiếp đường tròn
B) tứ giác BHCD là hình bình hành
c) tứ giác BFEc nội tiếp được đường tròn
d) Tam giác AEF ~ tam giác ABC, suy ra AE.AC = AF.AB
cho tam giác abc nhọn nội tiếp (o r) Các đường cao ad,ce cắt nhau tại h chứng minh tứ giác behd,aedc nội tiếp,ae.eb=eh.ec