bài 1: cho tam giác ABC cân tại A. Đường cao AH. Gọi O là trung điểm của AB. E là điểm đối xứng với H qua O, F là trung điểm của AH. Kẻ HK vuông góc AC tại K:
a) CM tứ giác AHBE là hình chữ nhật
b) CM 3 điểm E,F,C thẳng hàng
c) Gọi I là trung điểm của HK. CMR AI vuông góc với BK
Cho tam giác ABC cân tại A , có đường ccao AH . Gọi M là trung điểm của AB , E là điểm đối xứng với H qua M
a ) Chứng minh tứ giác AHBE là hình chữ nhật
b Gọi N là trung điểm của AH . Chứng minh E , N , C thẳng hàng
c ) Cho AH = 8cm , BC =12 cm . Tính diện tích tam giác AMH
d ) Trên tia đối của tia HA lấy điểm F . Kẻ \(HK\perp FC\left(K\in FC\right)\). Gọi I , Q lần luwowtj là trung điểm của H K cà KC . CM : BK vuông góc với FI
Cho tam giác nhọn ABC có các đường cao AD, BE cắt nhau tại H. Gọi O là trung điểm của BC và K là điểm đối xứng với H qua O. Kẻ đường thẳng qua H vuông góc với HK cắt các đường thẳng AB, AC lần lượt tại M và N.Chứng minh: HM=HN
Cho tam giác nhọn ABC có các đường cao AD, BE cắt nhau tại H. Gọi O là trung điểm của BC và K là điểm đối xứng với H qua O. Kẻ đường thẳng qua H vuông góc với HK cắt các đường thẳng AB, AC lần lượt tại M và N.Chứng minh: HM=HN
Cho tam giác ABC cân tại A, đường cao AD. Gọi M là trung điểm của AB. E là điểm đối xứng với D qua M.
a) CM: tứ giác ADBE là hình chữ nhật
b) TỨ giác ACDE là hình gì? CHứng minh?
c) Lấy điểm K sao cho B là trung điểm của AK. CM: CK=2CM
Cho tam giác ABC vuông ở A, đường cao AH. Gọi I và K lần lượt là hình chiếu vuông góc của H lên các cạnh AB và AC. Gọi O là giao điểm của Ah và IK. Hạ KD vuông góc với BC tại D. CM: Ba đường thẳng AD, CO và HK đồng quy