cho nửa đường tròn đường kính AB, trên đoạn AB lấy điểm M, gọi H là trung điểm của AM,đường thẳng qua H vuông góc với AB, cắt (O) tại C. đường tròn đường kính MB cắt CB tại I, CMR: HI là tiếp tuyến của đường tròn đường kính MB
Từ điểm M nằm ngoài đường tròn (O;R) vẽ hai tiếp tuyến MA, MB đến đường tròn ( A, B là tiếp điểm). AB cắt OM tại H. a) Chứng minh rằng: AB vuông góc với OM. b) Chứng minh rằng: HO.HM = 4 2 AB c) Kẻ đường kính AD. Từ O kẻ OI vuông góc với MD ( I MD ), OI cắt AB tại E. Chứng minh rằng: ED là tiếp tuyến của đường đường tròn (O)
Cho đường tròn (O) đường kính AB, lấy C thuộc (O) tiếp tuyến tại A của (O) cắt BC tại D, gọi M là trung điểm của AD
a) Chứng minh: MC là tiếp tuyến của (O)
b)Chứng minh: MO vuông góc AC tại trung điểm I của AC
Mọi người ơi giúp mình gấp 2 bài này với
Bài 1: Cho nửa đường tròn tâm O đường kính AB, tiếp tuyến Ax với nửa đường tròn. Qua C thuộc nửa đường tròn kẻ tiếp tuyến với nửa đường tròn cắt Ax tại M. Kẻ CH vuông góc AB cắt BM tại I. CM: IC=IH
Bài 2: Cho nửa đường tròn tâm O đường kính AB. Từ A và B vẽ tiếp tuyến Ax, By thuộc nửa đường tròn. Lấy M thuộc nửa đường tròn, vẽ tiếp tuyến thứ ba cắt Ax tại C, By tại D. BM giao Ax tại A', AM giao By tại B'. CM:
a,△A'AB đồng dạng với △ABB' và từ đó suy ra AA'.BB'=AB2
b,CA=CA' DB=DB'
c,B'A', DC, AB đồng quy
Mong mọi người vẽ hình cùng lời giải cho mình với ạ
Cảm ơn mọi người nhiều
Cho đường tròn (O:R) đường kính AB. Kẻ tiếp tuyến Ax, lấy P trên Ax (AP>R), Từ P a) Chứng minh bốn điểm A, P, M, D cùng thuộc một đường tròn. kẻ tiếp tuyến PM với (O). b) Chứng minh BM/OP c) Đường thẳng vuông góc với AB tại O cắt tỉa BM tại N. Chứng minh tứ giác OBNP là hình bình hành. d) Giả sử AN cắt OP tại K, PM cắt ON tại I, PN cắt OM tại J. Chứng minh I, J, K thẳng hàng.
Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc một nửa mặt phẳng bờ AB). Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N
a) Tính số đo góc MON
b) Chứng minh rằng MN = AM + BN
c) Chứng minh rằng \(AM.BN=R^2\) (R là bán kính của nửa đường tròn)