Bài 1: Cho hai đa thức F(x) và G(x)
a) F(x) = ax + b ; G(x) = MX + n
Chứng minh rằng: Nếu F(x) = G(x) với mọi x thì a = m ; b = n
b) F(x) = ax2 + bx + c ; G(x) = mx2 + nx + p
Chứng minh rằng: Nếu F(x) = G(x) với mọi x thì a = m ; b = n ; c = p
Bài 2 : Tìm nghiệm của các đa thức sau:
a) A(x) = 2(1/3x-1/2) - 1/2(3-x)
b) B(x) = (2x - 5).(x2 - 9/16).(x2 + 1)
c) C(x) = x3 - 2x
d) D(x) = 9x2 + 16
e) M(x) = x2 + 4x +4
f) N(x) = x3 - 27
g) P(x) = x2 + 2x + 3
h) P(x) = x3 - 2x2 - 2x + 4
Mọi người giúp với ạ. . Mai em nộp rồi 😥😥
Bài 1: Bài này tớ làm không đảm bảo đúng 100% nên nếu có gì sai sót mong bạn thông cảm
a) Nếu F(x) = G(x)
\(\Rightarrow ax+b-mx-n=0\)
\(\Rightarrow x\left(a-m\right)+\left(b-n\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x\left(a-m\right)=0\\b-n=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-m=0\\b=n\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=m\\b=n\end{matrix}\right.\)
b) Nếu F(x) = G(x)
\(\Rightarrow ax^2+bx+c-mx^2-nx-p=0\)
\(\Rightarrow x^2\left(a-m\right)+x\left(b-n\right)+\left(c-p\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x^2\left(a-m\right)=0\\x\left(b-n\right)=0\\c-p=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-m=0\\b-n=0\\c-p=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=m\\b=n\\c=p\end{matrix}\right.\)
Bài 2:
a) \(A\left(x\right)=0\)
\(\Leftrightarrow2\left(\dfrac{1}{3}x-\dfrac{1}{2}\right)-\dfrac{1}{2}\left(3-x\right)=0\)
\(\Leftrightarrow2.\dfrac{1}{3}x-2.\dfrac{1}{2}-\dfrac{1}{2}.3+\dfrac{1}{2}x=0\)
\(\Leftrightarrow\dfrac{2}{3}x-1-\dfrac{3}{2}+\dfrac{1}{2}x=0\)
\(\Leftrightarrow\dfrac{7}{6}x-\dfrac{5}{2}=0\)
\(\Leftrightarrow\dfrac{7}{6}x=\dfrac{5}{2}\)
\(\Leftrightarrow x=\dfrac{15}{7}\)
b) Nếu B (x) = 0
\(\Leftrightarrow\left(2x-5\right)\left(x^2-\dfrac{9}{16}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\x^2-\dfrac{9}{16}=0\\x^2+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=5\\x^2=\dfrac{9}{16}\\x^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{3}{4};x=-\dfrac{3}{4}\\x=1;x=-1\end{matrix}\right.\)
c) Nếu C(x) = 0
\(\Leftrightarrow x^3-2x=0\)
\(\Leftrightarrow x\left(x^2-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2};x=-\sqrt{2}\end{matrix}\right.\)
d) Nếu D(x) = 0
\(\Leftrightarrow9x^2+16=0\)
\(\Leftrightarrow9x^2=-16\)
\(\Leftrightarrow x^2=-\dfrac{16}{9}\)
Vậy không tồn tại x thỏa mãn
e) Nếu M(x) = 0
\(\Leftrightarrow x^2+4x+4=0\)
\(\Leftrightarrow\left(x+2\right)^2=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)