Bài 1: Cho đường tròn (O;R) điểm A nằm ngoài đường tròn. Qua A vẽ 2 tiếp tuyến AM;AN với đường tròn. Gọi P là giao của AO với đường tròn, H là giao của AO với MN
a) Chứng minh tứ giác AMON nội tiếp
b) Chứng minh P là tâm đường tròn nội tiếp △AMN. Cho OA=2R tính chu vi đường tròn ngoại tiếp △AMN
Bài 2: Một bức tượng cao 1,6m được đặt trên một cái bệ. Tại một điểm trên mặt đất người ta nhìn thấy nóc tượng và nóc bệ với các góc nâng lần lượt là 600, 450. Tính chiều cao của bệ
giải
2
Ta có: ˆADB=90o–ˆDAB=90o–60o=30oADB^=90o–DAB^=90o–60o=30o;
ˆACB=90o–ˆCAB=90o–45o=45oACB^=90o–CAB^=90o–45o=45o⇒⇒ Tam giác ABC vuông cân tại B
⇒h=BC=AB=CDcotˆADB–cotˆACB=1,6cot30o–cot45o≈2,19⇒h=BC=AB=CDcotADB^–cotACB^=1,6cot30o–cot45o≈2,19 (m)
mk chỉ bk bài 2 thôi