a: \(A=x+\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2-\dfrac{1}{4}>=0\)
Dấu '=' xảy ra khi x=0
b: \(B=x-\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}< =-\dfrac{1}{4}\)
Dấu = xảy ra khi x=1/4
c: \(=x-2005-\sqrt{x-2005}+2005\)
\(=\left(\sqrt{x-2005}\right)^2-2\cdot\sqrt{x-2005}\cdot\dfrac{1}{2}+\dfrac{1}{4}+2004.75\)
\(=\left(\sqrt{x-2005}-\dfrac{1}{2}\right)^2+2004.75>=2004.75\)
Dấu '=' xảy ra khi x=2005,25
d: \(D=x-2+2\sqrt{x-2}+2\)
\(=\left(\sqrt{x-2}+1\right)^2+1>=2\)
Dấu '=' xảy ra khi x=2