Mình nghĩ là bài 1: 2/141 đổi thành 2/143 mới đúng đề nha.
Bài 1: Tham khảo https://olm.vn/hoi-dap/question/40337.html
Mình nghĩ là bài 1: 2/141 đổi thành 2/143 mới đúng đề nha.
Bài 1: Tham khảo https://olm.vn/hoi-dap/question/40337.html
Bài 1:
a, Cho A = \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\)
Chứng tỏ: A <\(\dfrac{1}{2}\)
b, Cho B = \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{20}}\)
Chứng tỏ B < 1
c, Cho C = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
Chứng tỏ C < \(\dfrac{1}{2}\)
d, Cho D = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{20^2}\)
Chứng tỏ D < 1
1. Tính nhanh :
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
2. Tính nhanh :
\(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
3. Tính nhanh :
\(\dfrac{1}{2}+\dfrac{1}{14}+\dfrac{1}{35}+\dfrac{1}{65}+\dfrac{1}{104}+\dfrac{1}{152}\)
4. Chứng minh rằng :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}\)\(< 1\)
1.Chứng tỏ:
A=2+22+23+24+...+22004 chia hết cho 3, cho 7 và cho 15.
B=1+3+32+33+...+399chia hết cho 40.
2.Chứng tỏ chia có dư:
L=1+2+22+23+...+22009+22010 chia 7 dư 1.
*P/S:Giải từng bước nha!
chứng tỏ rằng : 49+48/2+47/3+...+2/48+1/49=50.(1/2+1/3+...+1/50)
Chứng tỏ rằng: 1/2+1/3+1/4+...+1/63+1/64>3
Bài 1: Thực hiện phép tính
a) Cho A= 1*2*3*...*9-1*2*3*...*8-1*2*3*...*8^2
b) Tìm các số tự nhiên có 4 chữ số sao cho khi nó chia cho 130,150 đc các số dư lần lượt là 88 và 105
Bài 2: Cho A = 1+3+3^2+...+3^29+3^30
a) A có phải là số chính phương ko?
b) chứng tỏ A-1 chia hết cho 7.
Tính tích P = ( 1- 1/2). (1- 1/3). (1- 1/4) ... ( 1 -1/99)
Chứng tỏ rằng : 1/101 +1/102+ ... +1/299 + 1/300 > 2/3
Cho A\(=\dfrac{\left(3\dfrac{2}{15}+\dfrac{1}{5}\right):2\dfrac{1}{2}}{\left(5\dfrac{3}{7}-2\dfrac{1}{4}\right):4\dfrac{43}{56}}\)
B\(=\dfrac{1,2:\left(1\dfrac{1}{5}\cdot1\dfrac{1}{4}\right)}{0,32+\dfrac{2}{25}}\)
Chứng tỏ A=B
Bài 1: Chứng tỏ rằng :
\(\dfrac{11}{15}< \dfrac{1}{21}+\dfrac{1}{22}+......+\dfrac{1}{60}< \dfrac{3}{2}\)
Bài 2: Chứng tỏ rằng:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+......+\dfrac{1}{n^2}< 1\)
\(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)
\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+\dfrac{1}{41}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{113}< \dfrac{1}{2}\)