Gọi p/s thứ nhất là \(\dfrac{1}{x}\), p/s thứ 2 là \(\dfrac{1}{y}\), p/s thứ 3 là \(\dfrac{1}{z}\)
Theo đề bài ta có : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\) (1)
và \(\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{z}\); \(\dfrac{1}{x}+\dfrac{1}{y}=5\cdot\left(\dfrac{1}{z}\right)\).
Thay biểu thức \(\dfrac{1}{x}+\dfrac{1}{y}=5\cdot\left(\dfrac{1}{z}\right)\) trên vào (1) ta được :
\(5\cdot\left(\dfrac{1}{z}\right)+\dfrac{1}{z}=1\Rightarrow z=6\) Vậy phân số thứ ba là \(\dfrac{1}{6}\).
Ta có : \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{1}{x}+\dfrac{1}{y}=5\cdot\dfrac{1}{6}\end{matrix}\right.\left(Đề-bài\right)\)
Bài toán tổng hiệu \(\dfrac{1}{x}\) là số lớn, \(\dfrac{1}{y}\) là số bé (do \(\dfrac{1}{x}-\dfrac{1}{y}\) ra số dương).
Vậy \(\dfrac{1}{x}=\dfrac{\left(\dfrac{1}{6}+5\cdot\dfrac{1}{6}\right)}{2}=\dfrac{1}{2}\); \(\dfrac{1}{y}=5\cdot\dfrac{1}{6}-\dfrac{1}{2}=\dfrac{1}{3}\)
Vậy phân số thứ nhất là \(\dfrac{1}{2}\), phân số thứ hai là \(\dfrac{1}{3}\), phân số thứ ba là \(\dfrac{1}{6}\).