Gọi số máy cày của đội thứ nhất, đội thứ hai và đội thứ ba lần lượt là a(máy), b(máy) và c(máy)(Điều kiện: a,b,c∈N*)
Vì đội thứ nhất làm xong công việc trong 3 ngày, đội thứ hai trong 6 ngày và đội thứ ba trong 5 ngày và năng suất của ba đội như nhau nên ta có phương trình:
\(3a=6b=5c\)
\(\Leftrightarrow\dfrac{a}{\dfrac{1}{3}}=\dfrac{b}{\dfrac{1}{6}}=\dfrac{c}{\dfrac{1}{5}}\)
Vì số máy của đội thứ nhất nhiều hơn số máy của đội thứ ba 8 chiếc nên ta có phương trình: a-c=8
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{3}}=\dfrac{b}{\dfrac{1}{6}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a-c}{\dfrac{1}{3}-\dfrac{1}{5}}=\dfrac{8}{\dfrac{2}{15}}=8\cdot\dfrac{15}{2}=60\)
Do đó:
\(\left\{{}\begin{matrix}3a=60\\6b=60\\5c=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\left(nhận\right)\\b=10\left(nhận\right)\\c=12\left(nhận\right)\end{matrix}\right.\)
Vậy: Số máy cày của ba đội lần lượt là 20 máy, 10 máy và 12 máy
Gọi số máy cày của 3 đội là a, b, c ( máy cày)
Vì các máy cày có cùng năng suất, cày trên 1 cánh đồng có diện tích như nhau nên số ngày và số máy cày là 2 đại lượng tỉ lệ nghịch.
➩ a.3 = b.6 = c.5
➩ \(\dfrac{a.3}{30}\) = \(\dfrac{b.6}{30}\) = \(\dfrac{c.5}{30}\)
➩ \(\dfrac{a}{10}\) = \(\dfrac{b}{5}\) = \(\dfrac{c}{6}\)
Mà số máy của đội thứ nhất hơn số máy của đội thứ ba là 8 chiếc.
Nên a - c = 8
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{a}{10}\) = \(\dfrac{b}{5}\) = \(\dfrac{c}{6}\) = \(\dfrac{a-c}{10-6}\) = \(\dfrac{8}{4}\)= 2
➩ a = 2.10 = 20
b = 2.5 = 10
c = 2.6 = 12
Vậy...