a) Vì \(R_1\text{/}\text{/}R_2\text{/}\text{/}R_3\) nên: \(U=U_1=U_2=U_3\)
\(\Rightarrow\left\{{}\begin{matrix}I_1=\dfrac{U}{R_1}=\dfrac{24}{6}=4\left(A\right)\\I_2=\dfrac{U}{R_2}=\dfrac{24}{8}=3\left(A\right)\end{matrix}\right.\)
Vì \(R_1\text{/}\text{/}R_2\text{/}\text{/}R_3\) nên: \(I=I_1+I_2+I_3\)
\(\Rightarrow I_3=I-I_1-I_2=9-3-4=2\left(A\right)\)
\(\Rightarrow R_3=\dfrac{U}{I_3}=\dfrac{24}{2}=12\left(\Omega\right)\)
b) Điện trở tương đương của đoạn mạch là:
\(R_{TĐ}=\dfrac{U}{I}=\dfrac{24}{9}\approx2,667\left(\Omega\right)\)
Vậy .......................
a. Phân tích mạch: R1//R2//R3
+.Do R1//R2//R3 \(\Rightarrow\) I1= \(\dfrac{U}{R1}\) = \(\dfrac{24}{6}\)=4A (U=U1=U2)
I2=\(\dfrac{U}{R2}\)=\(\dfrac{24}{8}\)=3A (U=U1=U2)
I3=I-(I1+I2)=9-(4+3)=2A
+. R3=\(\dfrac{U}{I3}\)=\(\dfrac{24}{2}\)=12Ω
b.Vì R1//R2//R3\(\Rightarrow\)
Rtđ=\(\dfrac{R1.R2.R3}{R1+R2+R3}\)=\(\dfrac{6.8.12}{6+8+12}\)=\(\approx22\)