\( Q = \dfrac{{{{\left( {\dfrac{{a - b}}{{\sqrt a + \sqrt b }}} \right)}^3} + 2a\sqrt a + b\sqrt b }}{{3{a^2} + 3b\sqrt {ab} }} + \dfrac{{\sqrt {ab} - a}}{{a\sqrt a - b\sqrt a }}\\ Q = \dfrac{{{{\left[ {\dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{\sqrt a + \sqrt b }}} \right]}^3} + 2a\sqrt a + b\sqrt b }}{{3\left( {{a^2} + b\sqrt {ab} } \right)}} + \dfrac{{\sqrt a \left( {\sqrt b - \sqrt a } \right)}}{{\sqrt a \left( {a - b} \right)}}\\ Q = \dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^3} + 2a\sqrt a + b\sqrt b }}{{3\sqrt a \left( {a\sqrt a + b\sqrt b } \right)}} + \dfrac{{ - \left( {\sqrt a - \sqrt b } \right)}}{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}\\ Q = \dfrac{1}{{\sqrt a + \sqrt b }} + \dfrac{{ - 1}}{{\sqrt a + \sqrt b }} = 0 \)
Vậy Q không phụ thuộc vào a,b