Violympic toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Minh

B= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...........+\frac{1}{2012^2}\)

CMR \(\frac{1}{2}-\frac{1}{2013}< B< 1\)

Akai Haruma
27 tháng 4 2019 lúc 23:20

Lời giải:

Ta có:

\(\frac{1}{2^2}=\frac{1}{2.2}>\frac{1}{2.3}\)

\(\frac{1}{3^2}=\frac{1}{3.3}>\frac{1}{3.4}\)

.........

\(\frac{1}{2012^2}=\frac{1}{2012.2012}>\frac{1}{2012.2013}\)

Cộng theo vế ta có:

\(B>\underbrace{\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2012.2013}}_{M}(1)\)

\(M=\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2013-2012}{2012.2013}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2012}-\frac{1}{2013}\)

\(=\frac{1}{2}-\frac{1}{2013}(2)\)

Từ \((1);(2)\Rightarrow B>\frac{1}{2}-\frac{1}{2013}(*)\)

---------------------------

\(B=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+....+\frac{1}{2012^2}<\underbrace{ \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}}_{N}(3)\)

Mà:

\(N=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2012-2011}{2011.2012}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2011}-\frac{1}{2012}\)

\(=1-\frac{1}{2012}<1(4)\)

Từ \((3);(4)\Rightarrow B< N< 1(**)\)

Từ \((*); (**)\) ta có đpcm.


Các câu hỏi tương tự
Nguyệt Nguyệt
Xem chi tiết
Nguyễn Giang
Xem chi tiết
Phương Thảo Nguyễn
Xem chi tiết
Nguyễn Thị Yến
Xem chi tiết
Phùng Thị Hải Yến
Xem chi tiết
Vương Thiên Dii
Xem chi tiết
👁💧👄💧👁
Xem chi tiết
Xem chi tiết
Xem chi tiết