Lời giải:
Ta có:
\(\frac{1}{2^2}=\frac{1}{2.2}>\frac{1}{2.3}\)
\(\frac{1}{3^2}=\frac{1}{3.3}>\frac{1}{3.4}\)
.........
\(\frac{1}{2012^2}=\frac{1}{2012.2012}>\frac{1}{2012.2013}\)
Cộng theo vế ta có:
\(B>\underbrace{\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2012.2013}}_{M}(1)\)
\(M=\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2013-2012}{2012.2013}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2012}-\frac{1}{2013}\)
\(=\frac{1}{2}-\frac{1}{2013}(2)\)
Từ \((1);(2)\Rightarrow B>\frac{1}{2}-\frac{1}{2013}(*)\)
---------------------------
\(B=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+....+\frac{1}{2012^2}<\underbrace{ \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}}_{N}(3)\)
Mà:
\(N=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2012-2011}{2011.2012}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2011}-\frac{1}{2012}\)
\(=1-\frac{1}{2012}<1(4)\)
Từ \((3);(4)\Rightarrow B< N< 1(**)\)
Từ \((*); (**)\) ta có đpcm.