a) Ta có: \(\dfrac{x-1}{-4}=\dfrac{-4}{x-1}\)
\(\Leftrightarrow\left(x-1\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy: \(x\in\left\{5;-3\right\}\)
b) Ta có: \(\dfrac{x-4}{6}=\dfrac{-1}{3}\)
\(\Leftrightarrow x-4=-2\)
hay x=2
Vậy: x=2
a/
\(x-\dfrac{1}{-4}=-\dfrac{4}{x-1}\)
\(x+\dfrac{1}{4}+\dfrac{4}{x-1}=0\)
\(\dfrac{x\left(x-1\right)4}{4\left(x-1\right)}+\dfrac{16}{4\left(x-1\right)}=0\)
\(4x\left(x-1\right)+16=0\)(quy tắc khử mẫu lớp 8)
\(4x^2-4x+16=0\)
\(4x^2-2x-2x+16=0\)
\(\left(4x^2-2x\right)-\left(2x-16\right)=0\)
\(2x\left(2x-1\right)-2\left(x-16\right)=0\)