a, Có: \(\frac{3x-2}{x^2-9}=0\)
ĐKXĐ: \(x^2-9\ne0\)
\(\Rightarrow3x-2=0\\ \Rightarrow3x=2\\ \Rightarrow x=\frac{2}{3}\left(\text{thỏa mãn}\right)\)
Vậy \(x=\frac{2}{3}\)
a) ĐKXĐ : \(x\ne\pm3\)
\(\frac{3x-2}{x^2-9}=0\Leftrightarrow3x-2=0\)
\(\Leftrightarrow x=\frac{2}{3}\) ( TM ĐKXĐ )
b) ĐKXĐ : \(x\ne0\)
\(A=\frac{5x^2+\left(x^2-4x+4\right)}{x^2}=5+\frac{\left(x-2\right)^2}{x^2}\ge5\forall x\ne0\)
Min A = 5 \(\Leftrightarrow\frac{\left(x-2\right)^2}{x^2}=0\Leftrightarrow x=2\)