\(a,A=-3\sqrt{8}+\sqrt{50}+\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(=-6\sqrt{2}+5\sqrt{2}+\left|1-\sqrt{2}\right|\)
\(=-\sqrt{2}-1+\sqrt{2}\)
\(=-1\)
Vậy \(A=-1\)
\(b,\)
\(=\left(\dfrac{5\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}\right)\)
\(=\left(\dfrac{5x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}\right)\)
\(=\left(\dfrac{\sqrt{x}\left(5\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}\right)\)
\(=\dfrac{5\sqrt{x}-1}{\sqrt{x}-1}.\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
\(=\dfrac{5\sqrt{x}-1}{\sqrt{x}}\)
Vậy \(B=\dfrac{5\sqrt{x}-1}{\sqrt{x}}\left(đk:x>0,x\ne1\right)\)