A = \(\sqrt{\sqrt{\left(5\right)^2}+2.1.\sqrt{5}+1}-\left(\sqrt{5}-1\right)\) + 2018
A = \(\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}+1\) + 2018
A = \(\sqrt{5}+1-\sqrt{5}+2019\)
A = 2020
\(A=\sqrt{2\sqrt{5}+6}-\sqrt{\left(\sqrt{5-1}\right)^2}+2018\)
\(A=\sqrt{\left(1+\sqrt{5}\right)^2}-\left(\sqrt{5}-1\right)+2018\)
\(A=1+\sqrt{5}-\sqrt{5}+1+2018\)
\(A=1+1+2018\)
\(A=2020\)