ĐK: \(n\ge3\)
\(n!+\dfrac{n!}{2}-\dfrac{n!}{\left(n-3\right)!.2}=5n^2+26n+684\)
\(\Leftrightarrow\dfrac{3}{2}n!=\dfrac{n\left(n-1\right)\left(n-2\right)}{2}+5n^2+26n+684\)
\(\Leftrightarrow3.n!-n^3-7n^2-54n-1368=0\) (1)
- Với \(n=\left\{3;4;5\right\}\) không thỏa mãn
- Với \(n=6\) thỏa mãn
- Với \(n>6\), ta có:
\(3.n!>3.n\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(n-4\right)\left(n-5\right)>3n\left(n-1\right)\left(n-2\right).3.2.1\)
\(\Rightarrow3.n!>18n\left(n-1\right)\left(n-2\right)\)
\(\Rightarrow3.n!-n^3-7n^2-54n-1368>18n\left(n-1\right)\left(n-2\right)-n^3-7n^2-54n-1368\)
\(=\left(n-6\right)\left(17n^2+41n+228\right)>0\)
\(\Rightarrow\) (1) vô nghiệm
Vậy \(n=6\) là giá trị duy nhất thỏa mãn