Rút gọn
\(A=\left(\frac{\sqrt{a}+2018}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2018}{a-1}\right):\frac{\sqrt{a}+1}{2\sqrt{a}}\)
Giúp mình với huhu
1)Tính:
a)\(\sqrt{13a}.\sqrt{\frac{52}{a}}\left(a< 0\right)\)
b)\(\left(2+\sqrt{5}\right).\left(2-\sqrt{5}\right)\)
c)\(\sqrt{b^4\left(a-b\right)^2}.\frac{1}{a-b}\left(a< 0\right)\)
d)\(\left(\sqrt{2019}-\sqrt{2018}\right).\left(\sqrt{2018}+\sqrt{2019}\right)\)
Giúp mk vs mấy bn, mk đang cần gấp
Chứng minh các đẳng thức sau:
a) \(\left(1-a^2\right):\left(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\right)+1=\frac{2}{1-a}\)
b) \(\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)=\sqrt{b}-\sqrt{a}\)
c) \(\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)=\frac{\sqrt{a}}{a}\)
Rút gọn biểu thức:
1) \(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\cdot\left(x-1\right)}{\sqrt{x}-1}\)
2) \(P=\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\frac{\left(1-x\right)^2}{2}\)
3) \(B=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
4) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right)\div\left(\frac{1}{\sqrt{a}+1}-\frac{2}{a-1}\right)\)
\(\left(\frac{a+\sqrt{a}}{\sqrt{a+1}}-\frac{\sqrt{a}-1}{a-\sqrt{a}}\right):\frac{\sqrt{a}-1}{a}\)
\(\sqrt{\left(2+\sqrt{7}\right)^2}-\sqrt{\left(2-\sqrt{7}\right)^2}\)
Cho biểu thức:
A=\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
a. Rút gọn A
Cho biểu thức P = \(\left(1+\frac{1}{\sqrt{x}-1}\right)\times\frac{1}{x-\sqrt{x}}\)
a) Rút gọn P b) Tìm x để \(P\times\sqrt{5+2\sqrt{6}}\times\left(\sqrt{x}-1\right)^2=x-2018+\sqrt{2}+\sqrt[]{3}\)
rút gọn:\(\left(1+\frac{\sqrt{a}}{a+1}\right)\div\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
Cho biểu thức: \(P=\frac{\left(\sqrt{a}-1\right)}{3\sqrt{a}+\left(\sqrt{a}-1\right)^2}-\frac{6-2\left(\sqrt{a}-1\right)^2}{a\sqrt{a}-1}+\frac{2}{\sqrt{a}-1}\)
Tìm GTLN và GTNN của P