Lời giải:
a)
Đặt \(\frac{x-12}{4}=\frac{y-9}{3}=z-1=k\Rightarrow \left\{\begin{matrix} x=4k+12\\ y=3k+9\\ z=k+1\end{matrix}\right.\)
Khi đó:
\(3x+5y-z=2\)
\(\Leftrightarrow 3(4k+12)+5(3k+9)-(k+1)=2\)
$\Rightarrow k=-3$
\(\Rightarrow \left\{\begin{matrix} x=4k+12=0\\ y=3k+9=0\\ z=k+1=-2\end{matrix}\right.\)
b)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a+b}{6}=\frac{b+c}{7}=\frac{a+c}{8}=\frac{a+b+b+c+c+a}{6+7+8}=\frac{2(a+b+c)}{21}=\frac{2.14}{21}=\frac{4}{3}\)
\(\Rightarrow \left\{\begin{matrix} a+b=8\\ b+c=\frac{28}{3}\\ c+a=\frac{32}{3}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a+b=8\\ b+c=\frac{28}{3}\\ c+a=\frac{32}{3}\\ a+b+c=14\end{matrix}\right.\Rightarrow \left\{\begin{matrix} c=6\\ a=\frac{14}{3}\\ b=\frac{10}{3}\end{matrix}\right.\)
Lời giải:
a)
Đặt \(\frac{x-12}{4}=\frac{y-9}{3}=z-1=k\Rightarrow \left\{\begin{matrix} x=4k+12\\ y=3k+9\\ z=k+1\end{matrix}\right.\)
Khi đó:
\(3x+5y-z=2\)
\(\Leftrightarrow 3(4k+12)+5(3k+9)-(k+1)=2\)
$\Rightarrow k=-3$
\(\Rightarrow \left\{\begin{matrix} x=4k+12=0\\ y=3k+9=0\\ z=k+1=-2\end{matrix}\right.\)
b)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a+b}{6}=\frac{b+c}{7}=\frac{a+c}{8}=\frac{a+b+b+c+c+a}{6+7+8}=\frac{2(a+b+c)}{21}=\frac{2.14}{21}=\frac{4}{3}\)
\(\Rightarrow \left\{\begin{matrix} a+b=8\\ b+c=\frac{28}{3}\\ c+a=\frac{32}{3}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a+b=8\\ b+c=\frac{28}{3}\\ c+a=\frac{32}{3}\\ a+b+c=14\end{matrix}\right.\Rightarrow \left\{\begin{matrix} c=6\\ a=\frac{14}{3}\\ b=\frac{10}{3}\end{matrix}\right.\)