Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi G là trọng tâm của tam giác SAB và I là trung điểm của AB. Lấy điểm M trong đạn AD sao cho AD = 3 AM
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)
b) Đường thẳng qua M và song song với AB cắt CI tại N. Chứng minh rằng NG // (SCD)
c) Chứng minh rằng MG // (SCD)
Cho hình chóp S.ABCD có đáy là hình thang ABCD, đáy lớn là AD và AD = 2BC. Gọi O là giao điểm của AC và BD, G là trọng tâm của tam giác SCD
a) Chứng minh rằng OG // (SBC)
b) Cho M là trung điểm của SD. Chứng minh rằng CM // (SAB)
c) Giả sử điểm I nằm trong đoạn SC sao cho \(SC=\dfrac{3}{2}SI\). Chứng minh rằng SA // (BID)
Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Gọi O là giao điểm của AC và BD, O' là giao điểm của AE và BF
a) Chứng minh rằng OO' song song với hai mặt phẳng (ADF) và (BCE)
b) Gọi M và N lần lượt là trọng tâm của các tam giác ABD và ABE. Chứng minh rằng MN // (CEF) ?
Cho tứ diện ABCD. Qua điểm M nằm trên AC ta dựng một mặt phẳng \(\left(\alpha\right)\) song song với AB và CD. Mặt phẳng này lần lượt cắt các cạnh BC, BD và AD tại N, P, Q
a) Tứ giác MNPQ là hình gì ?
b) Gọi O là giao điểm hai đường chéo của tứ giác MNPQ. Tìm tập hợp các điểm O khi M di động trên đoạn AC ?
chóp S.ABCD có đáy là hbh. Lấy M, N, P lần lượt là trung điểm SB,AB, SC. Tìm thiết diện của chóp tạo bởi (anpha) qua NP và song song với AM 2, cho S.ABCD có AD//BC. Gọi G1, G2 là trọng tâm tam giác SAB và tam giác SAD. Tìm thiết diện của hình chóp tạo bởi (CG1G2)
Cho hình chóp S.ABCD có đáy ABCD là hbh tâm O. Gọi M là trung điểm BC. P thuộc SA sao cho AP=2SP
a, Tìm giao điểm của PM và (SBD). Chứng minh SC//(MDP)
b, (Q) đi qua P và song song với AD, SB. Tìm thiết diện của chóp cắt bởi (Q)
Cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của AB, CD.
a) Chứng minh MN // (SBC); MN // (SAD).
b) Gọi I là trung điểm SA. Tìm giao điểm K của (INM) và SD.
c) Chứng minh: SB, SC // (IMN).
d) Gọi H là trung điểm IO. Chứng minh HK // (SBC).
Cho hình chóp S.ABCD, đáy ABCD là hình thang.
a, Tìm giao tuyến của (SAD) và (SBC).
b, Tìm giao tuyến của (SAB) và (SCD).
c, I và J lần lượt là trung điểm của AB và AD. Chứng minh IJ // (SBD).
d, Lấy \(M\in\left(\Delta SAC\right)\) miền trong. Tìm giao điểm của BM với mặt phẳng (SAC).
e, O là giao điểm của AC với BD. G là trọng tâm \(\Delta SBC\) . Chứng minh GO // (SCD).
Cho hình vuông ABCD, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi I là trung điểm của AB, K là trung điểm của AD. Chứng minh: a. (SAD) vuông góc với (SAB) b. (SID) vuông góc với (ABCD) c. (SID) vuông góc (SKC)