Rút gọn :
a, \(A=\sum\limits^n_{k=1}k.k!\)
b, \(B=\sum\limits^n_{k=2}\dfrac{k}{\left(k-1\right)!}\)
12, tìm hệ số x26trong khai triển : \(\left(1+x^7\right)^n\), x khác 0 biết :
\(C^1_{2n+1}+C^2_{2n+1}+...+C^n_{2n+1}=2^{20}-1\)
1/ Cho số nguyên tố p lẻ và \(p\equiv1\left(mod4\right)\)
Chứng minh số \(A=\sum\limits^{\dfrac{p-1}{2}}_{k=1}k.C^k_p\) là bội của \(p^2\)
2/ Cho các số nguyên dương k, m, n sao cho \(n\ge m+k;m\ge2k.\) Từ một nhóm gồm n người, trong đó có k cặp vợ chồng, có bao nhiêu cách chọn ra m người sao cho trong m người được chọn không có cặp vợ chồng nào.
Rút gọn:
\(A=\dfrac{6!}{\left(m-2\right)\left(m-3\right)}.\left[\dfrac{1}{\left(m+1\right)\left(m-4\right)}.\dfrac{\left(m+1\right)!}{\left(m-5\right)!5!}-\dfrac{m\left(m-1\right)!}{12.\left(m-4\right)!3!}\right]\) với \(m\ge5\)
tìm hệ số của số hạng chứa x26 trong khai triển nhị thức niuton của :
\(\left(\frac{1}{x^4}+x^7\right)^n\) biết rằng \(C^1_{2n+1}+C^2_{2n+1}+....+C^n_{2n+1}=2^{20}-1\)
HELP!................ ai trả lời nhanh và đúng nhất mình sẽ tích 3 lần
Giúp e bài 1 với ạ
Câu 1 : Rút gọn
\(G=\dfrac{6!}{\left(m-2\right)\left(m-3\right)}.\left[\dfrac{\left(m+1\right)!}{5!.\left(m-4\right)!.\left(m+1\right)}-\dfrac{m!}{12.3!.\left(m-4\right)!}\right]\)
Câu 2 : CMR
\(1+\dfrac{1}{1!}+\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{n!}< 3\forall n\in N\)
giải pt, bpt:
\(\dfrac{n!}{\left(n-2\right)!}\)+ \(\dfrac{3.\left(n+1\right)!}{n!}\)=3n
(n+2)! -4.(n+1)! < 5n!
Trong khai triển \(P\left(x\right)=\left(3-2x\right)^9\) , hãy tính tổng các hệ số của đa thức P(x).