= \(\frac{1\left(2-\sqrt{x}\right)+1\left(2+\sqrt{x}\right)-2\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
=\(\frac{2-\sqrt{x}+2+\sqrt{x}-2\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(=\frac{2\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}=\frac{2}{2+\sqrt{x}}\)
khi \(\frac{2}{2+\sqrt{x}}=\frac{1}{4}\)
\(\frac{2}{2+\sqrt{x}}-\frac{1}{4}=0\)
\(\Leftrightarrow2.4=1.\left(2+\sqrt{x}\right)\)
\(\Leftrightarrow8=2+\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\)