Giải phương trình sau:
P=\(\dfrac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\dfrac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\dfrac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)
Giải các pt với tham số là a,b,c
a , \(\dfrac{x-a}{3}=\dfrac{x+3}{a}-2\) e, \(3x+\dfrac{x}{a}-\dfrac{3a}{a+1}=\dfrac{4ax}{\left(a+1\right)^2}+\dfrac{\left(2a+1\right)x}{a\left(a+1\right)^2}-\dfrac{3a^2}{\left(a+1\right)^3}\)
b, \(\dfrac{x-a}{a+1}+\dfrac{x-1}{a-1}=\dfrac{2a}{1-a^2}\)
c, \(\dfrac{x+a-1}{a+2}+\dfrac{x-a}{a-2}+\dfrac{x-a}{4-a^2}\)
d, \(\dfrac{x-a}{b+c}+\dfrac{x-b}{c+a}+\dfrac{x-c}{a+b}=3\)
Giải các pt sau:
a)\(x^2+\dfrac{4x^2}{\left(x+2\right)^2}=12\)
b) \(\dfrac{x^2}{3}+\dfrac{48}{x^2}=5\left(\dfrac{x}{3}+\dfrac{4}{x}\right)\)
c) \(\left(\dfrac{x}{x-1}\right)^2+\left(\dfrac{x}{x+1}\right)^2=\dfrac{10}{9}\)
d) \(\left(\dfrac{x-1}{x}\right)^2+\left(\dfrac{x-1}{x-2}\right)^2=\dfrac{40}{9}\)
e) \(x^2+\left(\dfrac{x}{x-1}\right)^2=8\)
g) \(x^3+\dfrac{1}{x^3}=6\left(x+\dfrac{1}{x}\right)\)
f) \(\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)-12=0\)
Giải các pt sau:
a) \(x^2+\dfrac{4x^2}{\left(x+2\right)^2}=12\)
b) \(\dfrac{x^2}{3}+\dfrac{48}{x^2}=5.\left(\dfrac{x}{3}+\dfrac{4}{x}\right)\)
c) \(\left(\dfrac{x}{x-1}\right)^2+\left(\dfrac{x}{x+1}\right)^2=\dfrac{10}{9}\)
d) \(\left(\dfrac{x-1}{x}\right)^2+\left(\dfrac{x-1}{x-2}\right)^2=\dfrac{40}{9}\)
e) \(x^2+\left(\dfrac{x}{x+1}\right)^2=8\)
f) \(x^3+\dfrac{1}{x^3}=6\left(x+\dfrac{1}{x}\right)\)
Giải các phương trình sau:
a) \(x^2+\dfrac{4x^2}{\left(x+2\right)^2}=12\)
b) \(\dfrac{x^2}{3}+\dfrac{48}{x^2}=5\left(\dfrac{x}{3}+\dfrac{4}{x}\right)\)
c) \(\left(\dfrac{x}{x-1}\right)^2+\left(\dfrac{x}{x+1}\right)^2=\dfrac{10}{9}\)
d) \(\left(\dfrac{x-1}{x}\right)^2+\left(\dfrac{x-1}{x-2}\right)^2=\dfrac{40}{9}\)
e) \(x^2+\left(\dfrac{x}{x-1}\right)^2=8\)
f) \(\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)-12=0\)
g) \(x^3+\dfrac{1}{x^3}=6\left(x+\dfrac{1}{x}\right)\)
Giai phương trình sau :
a) \(\dfrac{4x-17}{2x^2+1}\) = 0
b)\(\dfrac{\left(x^2+2x\right)-\left(3x+6\right)}{x+2}\) = 0
c) \(\dfrac{4}{x-2}\)-x+2 = 0
Bt: Giải các pt sau:
a, \(\dfrac{x+3}{x+1}\) + \(\dfrac{x-2}{x}\)=\(\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)
b, \(\dfrac{2}{x-2}-\dfrac{x}{x+3}=\dfrac{5x}{\left(x-2\right)\left(x+3\right)}-1\)
c, \(\dfrac{1}{x^2+x+1}-\dfrac{1}{x^2-x+1}=\dfrac{1-2x}{x^4+x^2+1}\)
d, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)
e, \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)
\(a,\dfrac{3\left(2x+1\right)}{4}-5-\dfrac{3x+2}{10}=\dfrac{2\left(3x-1\right)}{5}\)
b,\(\dfrac{x-15}{23}+\dfrac{x-23}{15}-2=0\)
c,\(\dfrac{3\left(2x+1\right)}{4}-\dfrac{5x+3}{6}+\dfrac{x+1}{3}=x+\dfrac{7}{12}\)
giúp mình với ạ
Bài 1: giải các PT:
a, \(\dfrac{1}{2}\left(x+1\right)+\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{3}\left(x+2\right)\)
b, \(\dfrac{x+2}{98}+\dfrac{x+4}{96}=\dfrac{x+6}{94}+\dfrac{x+8}{92}\)
c, \(\dfrac{x-12}{77}+\dfrac{x-11}{78}=\dfrac{x-74}{15}+\dfrac{x-73}{16}\)
d, \(\dfrac{x+\dfrac{2\left(3-x\right)}{5}}{14}-\dfrac{5x-4\left(x-1\right)}{24}=\dfrac{7x+2+\dfrac{9-3x}{5}}{12}+\dfrac{2}{3}\)
\(e,\dfrac{x-\dfrac{3}{2014}+\dfrac{x-2}{2015}=\dfrac{x-2015}{2}+\dfrac{x-2014}{3}}{ }\)