\(A=\dfrac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}\)
\(=\dfrac{3-\sqrt{3+x}}{6-x}\) \(\left(x=\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}\text{ với 2009 dấu căn}\right)\)
\(=\dfrac{6-x}{\left(6-x\right)\left(3+\sqrt{3+x}\right)}=\dfrac{1}{3+\sqrt{3+x}}\)
Ta cần chứng minh \(\dfrac{1}{3+\sqrt{3+x}}< \dfrac{1}{4}\)
\(\Leftrightarrow\sqrt{3+x}>1\)
\(\Leftrightarrow x>-2\) đúng
\(\Rightarrowđpcm\)