a) \(\dfrac{1}{4}\sqrt{180}+\sqrt{20}-\sqrt{45}+5=\dfrac{1}{4}.6\sqrt{5}+2\sqrt{5}-3\sqrt{5}+5=\dfrac{\sqrt{5}}{2}+5=\dfrac{10+\sqrt{5}}{2}\)b) \(3\sqrt{\dfrac{1}{3}}+\dfrac{1}{4}\sqrt{48}-2\sqrt{3}=\sqrt{3}+\sqrt{3}-2\sqrt{3}=0\)
a) \(\dfrac{1}{4}\sqrt{180}+\sqrt{20}-\sqrt{45}+5=\dfrac{1}{4}.6\sqrt{5}+2\sqrt{5}-3\sqrt{5}+5=\dfrac{\sqrt{5}}{2}+5=\dfrac{10+\sqrt{5}}{2}\)b) \(3\sqrt{\dfrac{1}{3}}+\dfrac{1}{4}\sqrt{48}-2\sqrt{3}=\sqrt{3}+\sqrt{3}-2\sqrt{3}=0\)
1. Rút gọn các biểu thức sau:
a, \(\dfrac{1}{4}\sqrt{180}+\sqrt{20}-\sqrt{45}+5\) ; b,\(3\sqrt{\dfrac{1}{3}}+\dfrac{1}{4}\sqrt{48}-2\sqrt{3}\)
c,\(\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}\) ; d,\(\sqrt{\dfrac{a}{1+2b+b^2}}.\sqrt{\dfrac{4a+8ab+4ab^2}{225}}\)
2. Chứng minh các hằng đẳng thức sau:
a, \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}=4\)
b,\(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}=1\) với a≥0, b≤0, a≠ b
c, \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\) với a>0, a≠1
3. Chứng minh rằng giá trị của biểu thức M không phụ thuộc vào a:
M= \(\left(\dfrac{1}{2+2\sqrt{a}}+\dfrac{1}{2-2\sqrt{a}}-\dfrac{a^2+1}{1-a^2}\right)\left(1+\dfrac{1}{a}\right)\) với a >0; a≠ 1
Giúp em với e cần gấp lắm ạ
RÚT GỌN CÁC BIỂU THỨC SAU :
a ] \(\dfrac{1}{4}\)\(\sqrt{180}\) + \(\sqrt{20}\)- \(\sqrt{45}\) + 5
b] \(\sqrt[3]{\dfrac{1}{3}}\) +\(\dfrac{1}{4}\)\(\sqrt{48}\) - \(2\sqrt{3}\)
c] \(\sqrt{2a}\) - \(\sqrt{18}a^3\) +\(\sqrt[4]{\dfrac{a}{2}}\)
d]\(\sqrt{\dfrac{a}{1+2b+b^2}}\) . \(\sqrt{\dfrac{4a+8ab+4ab^2}{225}}\)
5 câu:
1) \(\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{6}+2}-\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{6}-2}\)
2) \(\dfrac{3}{\sqrt{5}-\sqrt{2}}-\dfrac{2}{2-\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}\)
3) \(\dfrac{12}{\sqrt{5}+1}-\dfrac{4}{\sqrt{5}+2}+\dfrac{20}{3+\sqrt{5}}\)
4) \(\dfrac{5}{3-\sqrt{7}}-\dfrac{2}{\sqrt{2}+\sqrt{3}}-\dfrac{1}{\sqrt{2}-1}\)
5) \(\dfrac{\sqrt{12}-6}{\sqrt{8}-\sqrt{24}}-\dfrac{3+\sqrt{3}}{\sqrt{3}}-\dfrac{4}{\sqrt{7}-1}\)
rút gọn các biểu thức sau:
\(\dfrac{1}{2}\sqrt{20}+5\)
\(\sqrt{16}+\sqrt{64}\)
\(\sqrt{20}-\sqrt{45}+3\sqrt{18}\)
\(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{2}\)
A= \(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\)
B=\(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
mình cần gấp á. tại vì mình khá là ngu toán nên giúp mik vs
Rút gọn các biểu thức:
1. \(\sqrt{28}-2\sqrt{252}+3\sqrt{175}+3\sqrt{567}\)
2. \(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{7-4\sqrt{3}}\)
3. \(\sqrt{9-4\sqrt{5}}-\sqrt{\dfrac{8}{7-3\sqrt{5}}}\)
4. \(\dfrac{\sqrt{3}}{2-\sqrt{3}}+\dfrac{2}{2+\sqrt{3}}\)
5. \(\dfrac{2\sqrt{2}+1}{1+\sqrt{2}}+\dfrac{1-2\sqrt{2}}{1-\sqrt{2}}+\left(2-\sqrt{3}\right).\left(2+\sqrt{3}\right)\)
6. \(\sqrt{\dfrac{2}{3-\sqrt{5}}}+\sqrt{\dfrac{2}{7+\sqrt{45}}}\)
7. \(\dfrac{\sqrt{2}}{\sqrt{1+\sqrt{2}}-1}-\dfrac{\sqrt{2}}{\sqrt{1+\sqrt{2}}+1}\)
8. \(\sqrt{6-2\sqrt{5}}+\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}\)
Rút gọn các biểu thức sau:
a) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
b) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
c) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
d) \(\left(\dfrac{1}{2}-\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)
giúp nha
bài 3 : rút gọn P = \(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-\dfrac{1}{\sqrt{4}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{6}}-\dfrac{1}{\sqrt{6}-\sqrt{7}}+\dfrac{1}{\sqrt{7}-\sqrt{8}}-\dfrac{1}{\sqrt{8}-\sqrt{9}}\)
Bài 40: Chứng minh rằng:
a) \(A=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}=9\)
b) \(B=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}=\dfrac{9}{10}\)
Thực hiên các phép tính:
a) \(2\sqrt{75}-4\sqrt{12}-3\sqrt{50}-\sqrt{72}\)
b) \(\sqrt{ab}+2\sqrt{\dfrac{b}{a}}-\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{1}{ab}}\left(a>0,b>0\right)\)
c) \(5\sqrt{a}-3\sqrt{25a^3}+2\sqrt{36ab^2}-2\sqrt{9a}\left(a>0,b>0\right)\)
d) \(\dfrac{2\sqrt{6}-2\sqrt{3}}{\sqrt{2}-1}-\dfrac{3+\sqrt{3}}{\sqrt{3}}+\sqrt{27}\)
e) \(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
f) \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\sqrt{54}+5\sqrt{1\dfrac{1}{3}}\)
g) \(0,1\sqrt{200}+2\sqrt{0,08}+0,4\sqrt{50}\)