Ta có :
3 + 32 + 33 + 34 + ........ + 3100 \(⋮\) 40
( 3 + 32 + 33 + 34 ) + ........ + ( 397 + 398 + 399 + 3100 )
120 + ...... + 396. ( 3 + 32 + 33 + 34 )
120 + ...... + 396 . 120
120 . ( 1 + ..... + 396 )
40 . 3 . ( 1 + ..... + 396 )
Vậy : 3 + 32 + 33 + 34 + ........ + 3100 \(⋮\) 40
a, C = 3 + 32 + 33 + 34 + ........ + 3100
= (3 + 32 + 33 + 34) + ......... + (397 + 398 + 399 + 3100)
= 3.(1 + 3 + 9 + 27) + ......... + 397.(1 + 3 + 9 + 27)
= 3.40 + ...........+ 397.40
= 40.(3 + ......... + 397)
\(40.\left(3+.......+3^{97}\right)⋮40\)
\(\Rightarrow3+3^2+3^3+3^4+.......+3^{100}⋮40\)
Chúc bạn thành công!